Hi Frieder, Thanks for the review. Please find my comments inline. > -----Original Message----- > From: Schrempf Frieder [mailto:frieder.schrempf@xxxxxxxxxx] > Sent: Thursday, December 6, 2018 2:53 PM > To: Yogesh Narayan Gaur <yogeshnarayan.gaur@xxxxxxx>; linux- > mtd@xxxxxxxxxxxxxxxxxxx; boris.brezillon@xxxxxxxxxxx; marek.vasut@xxxxxxxxx; > broonie@xxxxxxxxxx; linux-spi@xxxxxxxxxxxxxxx; devicetree@xxxxxxxxxxxxxxx > Cc: robh@xxxxxxxxxx; mark.rutland@xxxxxxx; shawnguo@xxxxxxxxxx; linux- > arm-kernel@xxxxxxxxxxxxxxxxxxx; computersforpeace@xxxxxxxxx; linux- > kernel@xxxxxxxxxxxxxxx > Subject: Re: [PATCH v5 1/5] spi: spi-mem: Add driver for NXP FlexSPI controller > > Hi Yogesh, > > I've had a closer look at your v5. See my comments below. > > On 16.11.18 12:13, Yogesh Narayan Gaur wrote: > > - Add driver for NXP FlexSPI host controller > > > > (0) What is the FlexSPI controller? > > FlexSPI is a flexsible SPI host controller which supports two SPI > > channels and up to 4 external devices. Each channel supports > > Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional > > data lines) i.e. FlexSPI acts as an interface to external devices, > > maximum 4, each with up to 8 bidirectional data lines. > > > > It uses new SPI memory interface of the SPI framework to issue > > flash memory operations to up to four connected flash > > devices (2 buses with 2 CS each). > > > > (1) Tested this driver with the mtd_debug and JFFS2 filesystem utility > > on NXP LX2160ARDB and LX2160AQDS targets. > > LX2160ARDB is having two NOR slave device connected on single bus A > > i.e. A0 and A1 (CS0 and CS1). > > LX2160AQDS is having two NOR slave device connected on separate buses > > one flash on A0 and second on B1 i.e. (CS0 and CS3). > > Verified this driver on following SPI NOR flashes: > > Micron, mt35xu512ab, [Read - 1 bit mode] > > Cypress, s25fl512s, [Read - 1/2/4 bit mode] > > > > Signed-off-by: Yogesh Gaur <yogeshnarayan.gaur@xxxxxxx> > > --- > > Changes for v5: > > - Rebase on top of v4.20-rc2 > > - Modified fspi_readl_poll_tout() as per review comments > > - Arrange header file in alphabetical order > > - Removed usage of read()/write() function callback pointer > > - Add support for 1 and 2 byte address length > > - Change Frieder e-mail to new e-mail address Changes for v4: > > - Incorporate Boris review comments > > * Use readl_poll_timeout() instead of busy looping. > > * Re-define register masking as per comment. > > * Drop fspi_devtype enum. > > Changes for v3: > > - Added endianness flag in platform specific structure instead of DTS. > > - Modified nxp_fspi_read_ahb(), removed remapping code. > > - Added Boris and Frieder as Author and provided reference of > > spi-fsl-qspi.c Changes for v2: > > - Incorporated Boris review comments. > > - Remove dependency of driver over connected flash device size. > > - Modified the logic to select requested CS. > > - Remove SPI-Octal Macros. > > > > drivers/spi/Kconfig | 10 + > > drivers/spi/Makefile | 1 + > > drivers/spi/spi-nxp-fspi.c | 1145 > ++++++++++++++++++++++++++++++++++++++++++++ > > 3 files changed, 1156 insertions(+) > > create mode 100644 drivers/spi/spi-nxp-fspi.c > > > > diff --git a/drivers/spi/Kconfig b/drivers/spi/Kconfig index > > 7d3a5c9..36630a1 100644 > > --- a/drivers/spi/Kconfig > > +++ b/drivers/spi/Kconfig > > @@ -259,6 +259,16 @@ config SPI_FSL_LPSPI > > help > > This enables Freescale i.MX LPSPI controllers in master mode. > > > > +config SPI_NXP_FLEXSPI > > + tristate "NXP Flex SPI controller" > > + depends on ARCH_LAYERSCAPE || HAS_IOMEM > > + help > > + This enables support for the Flex SPI controller in master mode. > > + Up to four slave devices can be connected on two buses with two > > + chipselects each. > > + This controller does not support generic SPI messages and only > > + supports the high-level SPI memory interface. > > + > > config SPI_GPIO > > tristate "GPIO-based bitbanging SPI Master" > > depends on GPIOLIB || COMPILE_TEST > > diff --git a/drivers/spi/Makefile b/drivers/spi/Makefile index > > 3575205..55fec5c 100644 > > --- a/drivers/spi/Makefile > > +++ b/drivers/spi/Makefile > > @@ -60,6 +60,7 @@ obj-$(CONFIG_SPI_MPC52xx) += spi- > mpc52xx.o > > obj-$(CONFIG_SPI_MT65XX) += spi-mt65xx.o > > obj-$(CONFIG_SPI_MXS) += spi-mxs.o > > obj-$(CONFIG_SPI_NUC900) += spi-nuc900.o > > +obj-$(CONFIG_SPI_NXP_FLEXSPI) += spi-nxp-fspi.o > > obj-$(CONFIG_SPI_OC_TINY) += spi-oc-tiny.o > > spi-octeon-objs := spi-cavium.o spi-cavium- > octeon.o > > obj-$(CONFIG_SPI_OCTEON) += spi-octeon.o > > diff --git a/drivers/spi/spi-nxp-fspi.c b/drivers/spi/spi-nxp-fspi.c > > new file mode 100644 index 0000000..a35013b > > --- /dev/null > > +++ b/drivers/spi/spi-nxp-fspi.c > > @@ -0,0 +1,1145 @@ > > +// SPDX-License-Identifier: GPL-2.0+ > > + > > +/* > > + * NXP FlexSPI(FSPI) controller driver. > > + * > > + * Copyright 2018 NXP. > > + * > > + * FlexSPI is a flexsible SPI host controller which supports two SPI > > + * channels and up to 4 external devices. Each channel supports > > + * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional > > + * data lines). > > + * > > + * FlexSPI controller is driven by the LUT(Look-up Table) registers > > + * LUT registers are a look-up-table for sequences of instructions. > > + * A valid sequence consists of four LUT registers. > > + * Maximum 32 LUT sequences can be programmed simultaneously. > > + * > > + * LUTs are being created at run-time based on the commands passed > > + * from the spi-mem framework, thus using single LUT index. > > + * > > + * Software triggered Flash read/write access by IP Bus. > > + * > > + * Memory mapped read access by AHB Bus. > > + * > > + * Based on SPI MEM interface and spi-fsl-qspi.c driver. > > + * > > + * Author: > > + * Yogesh Gaur <yogeshnarayan.gaur@xxxxxxx> > > + * Boris Brezillion <boris.brezillon@xxxxxxxxxxx> > > + * Frieder Schrempf <frieder.schrempf@xxxxxxxxxx> > > + */ > > + > > +#include <linux/bitops.h> > > +#include <linux/clk.h> > > +#include <linux/completion.h> > > +#include <linux/delay.h> > > +#include <linux/err.h> > > +#include <linux/errno.h> > > +#include <linux/interrupt.h> > > +#include <linux/io.h> > > +#include <linux/iopoll.h> > > +#include <linux/jiffies.h> > > +#include <linux/kernel.h> > > +#include <linux/module.h> > > +#include <linux/mutex.h> > > +#include <linux/of.h> > > +#include <linux/of_device.h> > > +#include <linux/platform_device.h> > > +#include <linux/pm_qos.h> > > +#include <linux/sizes.h> > > + > > +#include <linux/spi/spi.h> > > +#include <linux/spi/spi-mem.h> > > + > > +/* > > + * The driver only uses one single LUT entry, that is updated on > > + * each call of exec_op(). Index 0 is preset at boot with a basic > > + * read operation, so let's use the last entry (31). > > + */ > > +#define SEQID_LUT 31 > > + > > +/* Registers used by the driver */ > > +#define FSPI_MCR0 0x00 > > +#define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24) > > +#define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16) > > +#define FSPI_MCR0_LEARN_EN BIT(15) > > +#define FSPI_MCR0_SCRFRUN_EN BIT(14) > > +#define FSPI_MCR0_OCTCOMB_EN BIT(13) > > +#define FSPI_MCR0_DOZE_EN BIT(12) > > +#define FSPI_MCR0_HSEN BIT(11) > > +#define FSPI_MCR0_SERCLKDIV BIT(8) > > +#define FSPI_MCR0_ATDF_EN BIT(7) > > +#define FSPI_MCR0_ARDF_EN BIT(6) > > +#define FSPI_MCR0_RXCLKSRC(x) ((x) << 4) > > +#define FSPI_MCR0_END_CFG(x) ((x) << 2) > > +#define FSPI_MCR0_MDIS BIT(1) > > +#define FSPI_MCR0_SWRST BIT(0) > > + > > +#define FSPI_MCR1 0x04 > > +#define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16) > > +#define FSPI_MCR1_AHB_TIMEOUT(x) (x) > > + > > +#define FSPI_MCR2 0x08 > > +#define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24) > > +#define FSPI_MCR2_SAMEDEVICEEN BIT(15) > > +#define FSPI_MCR2_CLRLRPHS BIT(14) > > +#define FSPI_MCR2_ABRDATSZ BIT(8) > > +#define FSPI_MCR2_ABRLEARN BIT(7) > > +#define FSPI_MCR2_ABR_READ BIT(6) > > +#define FSPI_MCR2_ABRWRITE BIT(5) > > +#define FSPI_MCR2_ABRDUMMY BIT(4) > > +#define FSPI_MCR2_ABR_MODE BIT(3) > > +#define FSPI_MCR2_ABRCADDR BIT(2) > > +#define FSPI_MCR2_ABRRADDR BIT(1) > > +#define FSPI_MCR2_ABR_CMD BIT(0) > > + > > +#define FSPI_AHBCR 0x0c > > +#define FSPI_AHBCR_RDADDROPT BIT(6) > > +#define FSPI_AHBCR_PREF_EN BIT(5) > > +#define FSPI_AHBCR_BUFF_EN BIT(4) > > +#define FSPI_AHBCR_CACH_EN BIT(3) > > +#define FSPI_AHBCR_CLRTXBUF BIT(2) > > +#define FSPI_AHBCR_CLRRXBUF BIT(1) > > +#define FSPI_AHBCR_PAR_EN BIT(0) > > + > > +#define FSPI_INTEN 0x10 > > +#define FSPI_INTEN_SCLKSBWR BIT(9) > > +#define FSPI_INTEN_SCLKSBRD BIT(8) > > +#define FSPI_INTEN_DATALRNFL BIT(7) > > +#define FSPI_INTEN_IPTXWE BIT(6) > > +#define FSPI_INTEN_IPRXWA BIT(5) > > +#define FSPI_INTEN_AHBCMDERR BIT(4) > > +#define FSPI_INTEN_IPCMDERR BIT(3) > > +#define FSPI_INTEN_AHBCMDGE BIT(2) > > +#define FSPI_INTEN_IPCMDGE BIT(1) > > +#define FSPI_INTEN_IPCMDDONE BIT(0) > > + > > +#define FSPI_INTR 0x14 > > +#define FSPI_INTR_SCLKSBWR BIT(9) > > +#define FSPI_INTR_SCLKSBRD BIT(8) > > +#define FSPI_INTR_DATALRNFL BIT(7) > > +#define FSPI_INTR_IPTXWE BIT(6) > > +#define FSPI_INTR_IPRXWA BIT(5) > > +#define FSPI_INTR_AHBCMDERR BIT(4) > > +#define FSPI_INTR_IPCMDERR BIT(3) > > +#define FSPI_INTR_AHBCMDGE BIT(2) > > +#define FSPI_INTR_IPCMDGE BIT(1) > > +#define FSPI_INTR_IPCMDDONE BIT(0) > > + > > +#define FSPI_LUTKEY 0x18 > > +#define FSPI_LUTKEY_VALUE 0x5AF05AF0 > > + > > +#define FSPI_LCKCR 0x1C > > + > > +#define FSPI_LCKER_LOCK 0x1 > > +#define FSPI_LCKER_UNLOCK 0x2 > > + > > +#define FSPI_BUFXCR_INVALID_MSTRID 0xE > > +#define FSPI_AHBRX_BUF0CR0 0x20 > > +#define FSPI_AHBRX_BUF1CR0 0x24 > > +#define FSPI_AHBRX_BUF2CR0 0x28 > > +#define FSPI_AHBRX_BUF3CR0 0x2C > > +#define FSPI_AHBRX_BUF4CR0 0x30 > > +#define FSPI_AHBRX_BUF5CR0 0x34 > > +#define FSPI_AHBRX_BUF6CR0 0x38 > > +#define FSPI_AHBRX_BUF7CR0 0x3C > > +#define FSPI_AHBRXBUF0CR7_PREF BIT(31) > > + > > +#define FSPI_AHBRX_BUF0CR1 0x40 > > +#define FSPI_AHBRX_BUF1CR1 0x44 > > +#define FSPI_AHBRX_BUF2CR1 0x48 > > +#define FSPI_AHBRX_BUF3CR1 0x4C > > +#define FSPI_AHBRX_BUF4CR1 0x50 > > +#define FSPI_AHBRX_BUF5CR1 0x54 > > +#define FSPI_AHBRX_BUF6CR1 0x58 > > +#define FSPI_AHBRX_BUF7CR1 0x5C > > + > > +#define FSPI_FLSHA1CR0 0x60 > > +#define FSPI_FLSHA2CR0 0x64 > > +#define FSPI_FLSHB1CR0 0x68 > > +#define FSPI_FLSHB2CR0 0x6C > > +#define FSPI_FLSHXCR0_SZ_KB 10 > > +#define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB) > > + > > +#define FSPI_FLSHA1CR1 0x70 > > +#define FSPI_FLSHA2CR1 0x74 > > +#define FSPI_FLSHB1CR1 0x78 > > +#define FSPI_FLSHB2CR1 0x7C > > +#define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16) > > +#define FSPI_FLSHXCR1_CAS(x) ((x) << 11) > > +#define FSPI_FLSHXCR1_WA BIT(10) > > +#define FSPI_FLSHXCR1_TCSH(x) ((x) << 5) > > +#define FSPI_FLSHXCR1_TCSS(x) (x) > > + > > +#define FSPI_FLSHA1CR2 0x80 > > +#define FSPI_FLSHA2CR2 0x84 > > +#define FSPI_FLSHB1CR2 0x88 > > +#define FSPI_FLSHB2CR2 0x8C > > +#define FSPI_FLSHXCR2_CLRINSP BIT(24) > > +#define FSPI_FLSHXCR2_AWRWAIT BIT(16) > > +#define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13 > > +#define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8 > > +#define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5 > > +#define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0 > > + > > +#define FSPI_IPCR0 0xA0 > > + > > +#define FSPI_IPCR1 0xA4 > > +#define FSPI_IPCR1_IPAREN BIT(31) > > +#define FSPI_IPCR1_SEQNUM_SHIFT 24 > > +#define FSPI_IPCR1_SEQID_SHIFT 16 > > +#define FSPI_IPCR1_IDATSZ(x) (x) > > + > > +#define FSPI_IPCMD 0xB0 > > +#define FSPI_IPCMD_TRG BIT(0) > > + > > +#define FSPI_DLPR 0xB4 > > + > > +#define FSPI_IPRXFCR 0xB8 > > +#define FSPI_IPRXFCR_CLR BIT(0) > > +#define FSPI_IPRXFCR_DMA_EN BIT(1) > > +#define FSPI_IPRXFCR_WMRK(x) ((x) << 2) > > + > > +#define FSPI_IPTXFCR 0xBC > > +#define FSPI_IPTXFCR_CLR BIT(0) > > +#define FSPI_IPTXFCR_DMA_EN BIT(1) > > +#define FSPI_IPTXFCR_WMRK(x) ((x) << 2) > > + > > +#define FSPI_DLLACR 0xC0 > > +#define FSPI_DLLACR_OVRDEN BIT(8) > > + > > +#define FSPI_DLLBCR 0xC4 > > +#define FSPI_DLLBCR_OVRDEN BIT(8) > > + > > +#define FSPI_STS0 0xE0 > > +#define FSPI_STS0_DLPHB(x) ((x) << 8) > > +#define FSPI_STS0_DLPHA(x) ((x) << 4) > > +#define FSPI_STS0_CMD_SRC(x) ((x) << 2) > > +#define FSPI_STS0_ARB_IDLE BIT(1) > > +#define FSPI_STS0_SEQ_IDLE BIT(0) > > + > > +#define FSPI_STS1 0xE4 > > +#define FSPI_STS1_IP_ERRCD(x) ((x) << 24) > > +#define FSPI_STS1_IP_ERRID(x) ((x) << 16) > > +#define FSPI_STS1_AHB_ERRCD(x) ((x) << 8) > > +#define FSPI_STS1_AHB_ERRID(x) (x) > > + > > +#define FSPI_AHBSPNST 0xEC > > +#define FSPI_AHBSPNST_DATLFT(x) ((x) << 16) > > +#define FSPI_AHBSPNST_BUFID(x) ((x) << 1) > > +#define FSPI_AHBSPNST_ACTIVE BIT(0) > > + > > +#define FSPI_IPRXFSTS 0xF0 > > +#define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16) > > +#define FSPI_IPRXFSTS_FILL(x) (x) > > + > > +#define FSPI_IPTXFSTS 0xF4 > > +#define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16) > > +#define FSPI_IPTXFSTS_FILL(x) (x) > > + > > +#define FSPI_RFDR 0x100 > > +#define FSPI_TFDR 0x180 > > + > > +#define FSPI_LUT_BASE 0x200 > > +#define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4) > > +#define FSPI_LUT_REG(idx) \ > > + (FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4) > > + > > +/* register map end */ > > + > > +/* Instruction set for the LUT register. */ > > +#define LUT_STOP 0x00 > > +#define LUT_CMD 0x01 > > +#define LUT_ADDR 0x02 > > +#define LUT_CADDR_SDR 0x03 > > +#define LUT_MODE 0x04 > > +#define LUT_MODE2 0x05 > > +#define LUT_MODE4 0x06 > > +#define LUT_MODE8 0x07 > > +#define LUT_NXP_WRITE 0x08 > > +#define LUT_NXP_READ 0x09 > > +#define LUT_LEARN_SDR 0x0A > > +#define LUT_DATSZ_SDR 0x0B > > +#define LUT_DUMMY 0x0C > > +#define LUT_DUMMY_RWDS_SDR 0x0D > > +#define LUT_JMP_ON_CS 0x1F > > +#define LUT_CMD_DDR 0x21 > > +#define LUT_ADDR_DDR 0x22 > > +#define LUT_CADDR_DDR 0x23 > > +#define LUT_MODE_DDR 0x24 > > +#define LUT_MODE2_DDR 0x25 > > +#define LUT_MODE4_DDR 0x26 > > +#define LUT_MODE8_DDR 0x27 > > +#define LUT_WRITE_DDR 0x28 > > +#define LUT_READ_DDR 0x29 > > +#define LUT_LEARN_DDR 0x2A > > +#define LUT_DATSZ_DDR 0x2B > > +#define LUT_DUMMY_DDR 0x2C > > +#define LUT_DUMMY_RWDS_DDR 0x2D > > + > > +/* > > + * Calculate number of required PAD bits for LUT register. > > + * > > + * The pad stands for the number of IO lines [0:7]. > > + * For example, the octal read needs eight IO lines, > > + * so you should use LUT_PAD(8). This macro > > + * returns 3 i.e. use eight (2^3) IP lines for read. > > + */ > > +#define LUT_PAD(x) (fls(x) - 1) > > + > > +/* > > + * Macro for constructing the LUT entries with the following > > + * register layout: > > + * > > + * --------------------------------------------------- > > + * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 | > > + * --------------------------------------------------- > > + */ > > +#define PAD_SHIFT 8 > > +#define INSTR_SHIFT 10 > > +#define OPRND_SHIFT 16 > > + > > +/* Macros for constructing the LUT register. */ > > +#define LUT_DEF(idx, ins, pad, opr) \ > > + ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \ > > + (opr)) << (((idx) % 2) * OPRND_SHIFT)) > > + > > +/* Operands for the LUT register. */ > > +#define ADDR8BIT 0x08 > > +#define ADDR16BIT 0x10 > > +#define ADDR24BIT 0x18 > > +#define ADDR32BIT 0x20 > > You can drop these ADDRXBIT definitions, see below... > Ok, would drop in next version. > > + > > +#define POLL_TOUT 5000 > > +#define NXP_FSPI_MAX_CHIPSELECT 4 > > + > > +struct nxp_fspi_devtype_data { > > + unsigned int rxfifo; > > + unsigned int txfifo; > > + unsigned int ahb_buf_size; > > + unsigned int quirks; > > + bool little_endian; > > +}; > > + > > +static const struct nxp_fspi_devtype_data lx2160a_data = { > > + .rxfifo = SZ_512, /* (64 * 64 bits) */ > > + .txfifo = SZ_1K, /* (128 * 64 bits) */ > > + .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ > > + .quirks = 0, > > + .little_endian = true, /* little-endian */ > > +}; > > + > > +struct nxp_fspi { > > + void __iomem *iobase; > > + void __iomem *ahb_addr; > > + u32 memmap_phy; > > + u32 memmap_phy_size; > > + struct clk *clk, *clk_en; > > + struct device *dev; > > + struct completion c; > > + const struct nxp_fspi_devtype_data *devtype_data; > > + struct mutex lock; > > + struct pm_qos_request pm_qos_req; > > + int selected; > > +}; > > + > > +/* > > + * R/W functions for big- or little-endian registers: > > + * The FSPI controller's endianness is independent of > > + * the CPU core's endianness. So far, although the CPU > > + * core is little-endian the FSPI controller can use > > + * big-endian or little-endian. > > + */ > > +static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem > > +*addr) { > > + if (f->devtype_data->little_endian) > > + iowrite32(val, addr); > > + else > > + iowrite32be(val, addr); > > +} > > + > > +static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr) { > > + if (f->devtype_data->little_endian) > > + return ioread32(addr); > > + else > > + return ioread32be(addr); > > +} > > + > > +static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id) { > > + struct nxp_fspi *f = dev_id; > > + u32 reg; > > + > > + /* clear interrupt */ > > + reg = fspi_readl(f, f->iobase + FSPI_INTR); > > + fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR); > > + > > + if (reg & FSPI_INTR_IPCMDDONE) > > + complete(&f->c); > > + > > + return IRQ_HANDLED; > > +} > > + > > +static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width) { > > + switch (width) { > > + case 1: > > + case 2: > > + case 4: > > + case 8: > > + return 0; > > + } > > + > > + return -ENOTSUPP; > > +} > > + > > +static bool nxp_fspi_supports_op(struct spi_mem *mem, > > + const struct spi_mem_op *op) > > +{ > > + struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master); > > + int ret; > > + > > + ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth); > > + > > + if (op->addr.nbytes) > > + ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth); > > + > > + if (op->dummy.nbytes) > > + ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth); > > + > > + if (op->data.nbytes) > > + ret |= nxp_fspi_check_buswidth(f, op->data.buswidth); > > + > > + if (ret) > > + return false; > > + > > + /* > > + * The number of instructions needed for the op, needs > > + * to fit into a single LUT entry. > > + */ > > + if (op->addr.nbytes + > > + (op->dummy.nbytes ? 1:0) + > > + (op->data.nbytes ? 1:0) > 6) > > + return false; > > + > > + /* Max 64 dummy clock cycles supported */ > > + if (op->dummy.buswidth && > > + (op->dummy.nbytes * 8 / op->dummy.buswidth > 64)) > > + return false; > > + > > + /* Max data length, check controller limits and alignment */ > > + if (op->data.dir == SPI_MEM_DATA_IN && > > + (op->data.nbytes > f->devtype_data->ahb_buf_size || > > + (op->data.nbytes > f->devtype_data->rxfifo - 4 && > > + !IS_ALIGNED(op->data.nbytes, 8)))) > > + return false; > > + > > + if (op->data.dir == SPI_MEM_DATA_OUT && > > + op->data.nbytes > f->devtype_data->txfifo) > > + return false; > > + > > + return true; > > +} > > + > > +/* Instead of busy looping invoke readl_poll_timeout functionality. > > +*/ static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base, > > + u32 mask, u32 delay_us, > > + u32 timeout_us, bool condition) > > +{ > > + u32 reg; > > + > > + if (!f->devtype_data->little_endian) > > + mask = (u32)cpu_to_be32(mask); > > + > > + if (condition) > > + return readl_poll_timeout(base, reg, (reg & mask), > > + delay_us, timeout_us); > > + else > > + return readl_poll_timeout(base, reg, !(reg & mask), > > + delay_us, timeout_us); > > I would rather use a local variable to store the condition: > > bool c = condition ? (reg & mask):!(reg & mask); > With these type of usage getting below warning messages. drivers/spi/spi-nxp-fspi.c: In function ‘fspi_readl_poll_tout.isra.10.constprop’: drivers/spi/spi-nxp-fspi.c:446:21: warning: ‘reg’ may be used uninitialized in this function [-Wmaybe-uninitialized] bool cn = c ? (reg & mask) : !(reg & mask); If assign value to reg = 0xffffffff then timeout is start getting hit for False case and if assign value 0 then start getting timeout hit for true case. I would rather not try to modify this function. > return readl_poll_timeout(base, reg, c, delay_us, timeout_us); > > > +} > > + > > +/* > > + * If the slave device content being changed by Write/Erase, need to > > + * invalidate the AHB buffer. This can be achieved by doing the reset > > + * of controller after setting MCR0[SWRESET] bit. > > + */ > > +static inline void nxp_fspi_invalid(struct nxp_fspi *f) { > > + u32 reg; > > + int ret; > > + > > + reg = fspi_readl(f, f->iobase + FSPI_MCR0); > > + fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0); > > + > > + /* w1c register, wait unit clear */ > > + ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0, > > + FSPI_MCR0_SWRST, 0, POLL_TOUT, false); > > + WARN_ON(ret); > > +} > > + > > +static void nxp_fspi_prepare_lut(struct nxp_fspi *f, > > + const struct spi_mem_op *op) > > +{ > > + void __iomem *base = f->iobase; > > + u32 lutval[4] = {}; > > + int lutidx = 1, i; > > + > > + /* cmd */ > > + lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth), > > + op->cmd.opcode); > > + > > + /* addr bus width */ > > + if (op->addr.nbytes) { > > + u32 addrlen = 0; > > + > > + switch (op->addr.nbytes) { > > + case 1: > > + addrlen = ADDR8BIT; > > + break; > > + case 2: > > + addrlen = ADDR16BIT; > > + break; > > + case 3: > > + addrlen = ADDR24BIT; > > + break; > > + case 4: > > + addrlen = ADDR32BIT; > > + break; > > + default: > > + dev_err(f->dev, "In-correct address length\n"); > > + return; > > + } > > You don't need to validate op->addr.nbytes here, this is already done in > nxp_fspi_supports_op(). Yes, I need to validate op->addr.nbytes else LUT would going to be programmed for 0 addrlen. I have checked this on the target. > > > + > > + lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR, > > + LUT_PAD(op->addr.buswidth), > > + addrlen); > > You can also just remove the whole switch statement above and use this: > > lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR, > LUT_PAD(op->addr.buswidth), > op->addr.nbytes * 8); > Ok, would include in next version. > > + lutidx++; > > + } > > + > > + /* dummy bytes, if needed */ > > + if (op->dummy.nbytes) { > > + lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY, > > + /* > > + * Due to FlexSPI controller limitation number of PAD for > dummy > > + * buswidth needs to be programmed as equal to data buswidth. > > + */ > > + LUT_PAD(op->data.buswidth), > > + op->dummy.nbytes * 8 / > > + op->dummy.buswidth); > > + lutidx++; > > + } > > + > > + /* read/write data bytes */ > > + if (op->data.nbytes) { > > + lutval[lutidx / 2] |= LUT_DEF(lutidx, > > + op->data.dir == > SPI_MEM_DATA_IN ? > > + LUT_NXP_READ : LUT_NXP_WRITE, > > + LUT_PAD(op->data.buswidth), > > + 0); > > + lutidx++; > > + } > > + > > + /* stop condition. */ > > + lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0); > > + > > + /* unlock LUT */ > > + fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY); > > + fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR); > > + > > + /* fill LUT */ > > + for (i = 0; i < ARRAY_SIZE(lutval); i++) > > + fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i)); > > + > > + dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x]\n", > > + op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3]); > > + > > + /* lock LUT */ > > + fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY); > > + fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR); } > > + > > +static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f) { > > + int ret; > > + > > + ret = clk_prepare_enable(f->clk_en); > > + if (ret) > > + return ret; > > + > > + ret = clk_prepare_enable(f->clk); > > + if (ret) { > > + clk_disable_unprepare(f->clk_en); > > + return ret; > > + } > > + > > + return 0; > > +} > > + > > +static void nxp_fspi_clk_disable_unprep(struct nxp_fspi *f) { > > + clk_disable_unprepare(f->clk); > > + clk_disable_unprepare(f->clk_en); > > +} > > + > > +/* > > + * In FlexSPI controller, flash access is based on value of > > +FSPI_FLSHXXCR0 > > + * register and start base address of the slave device. > > + * > > + * (Higher address) > > + * -------- <-- FLSHB2CR0 > > + * | B2 | > > + * | | > > + * B2 start address --> -------- <-- FLSHB1CR0 > > + * | B1 | > > + * | | > > + * B1 start address --> -------- <-- FLSHA2CR0 > > + * | A2 | > > + * | | > > + * A2 start address --> -------- <-- FLSHA1CR0 > > + * | A1 | > > + * | | > > + * A1 start address --> -------- (Lower address) > > + * > > + * > > + * Start base address defines the starting address range for given CS > > +and > > + * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS. > > + * > > + * But, different targets are having different combinations of number > > +of CS, > > + * some targets only have single CS or two CS covering controller's > > +full > > + * memory mapped space area. > > + * Thus, implementation is being done as independent of the size and > > +number > > + * of the connected slave device. > > + * Assign controller memory mapped space size as the size to the > > +connected > > + * slave device. > > + * Mark FLSHxxCR0 as zero initially and then assign value only to the > > +selected > > + * chip-select Flash configuration register. > > + * > > + * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to > > +the > > + * memory mapped size of the controller. > > + * Value for rest of the CS FLSHxxCR0 register would be zero. > > + * > > + */ > > +static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device > > +*spi) { > > + unsigned long rate = spi->max_speed_hz; > > + int ret; > > + uint64_t size_kb; > > + > > + /* > > + * Return, if previously selected slave device is same as current > > + * requested slave device. > > + */ > > + if (f->selected == spi->chip_select) > > + return; > > + > > + /* Reset FLSHxxCR0 registers */ > > + fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0); > > + fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0); > > + fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0); > > + fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0); > > + > > + /* Assign controller memory mapped space as size, KBytes, of flash. */ > > + size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size); > Above description of this function, explains the reason for using memmap_phy_size. This is not the arbitrary size, but the memory mapped size being assigned to the controller. > You are still using memory of arbitrary size (memmap_phy_size) for mapping the > flash. Why not use the same approach as in the QSPI driver and just map > ahb_buf_size until we implement the dirmap API? The approach which being used in QSPI driver didn't work here, I have tried with that. In QSPI driver, while preparing LUT we are assigning read/write address in the LUT preparation and have to for some unknown hack have to provide macro for LUT_MODE instead of LUT_ADDR. But this thing didn't work for FlexSPI. I discussed with HW IP owner and they suggested only to use LUT_ADDR for specifying the address length of the command i.e. 3-byte or 4-byte address command (NOR) or 1-2 byte address command for NAND. Thus, in LUT preparation we have assigned only the base address. Now if I have assigned ahb_buf_size to FSPI_FLSHXXCR0 register then for read/write data beyond limit of ahb_buf_size offset I get data corruption. Thus, for generic approach have assigned FSPI_FLSHXXCR0 equal to the memory mapped size to the controller. This would also not going to depend on the number of CS present on the target. > You are already aligning the AHB reads for this in nxp_fspi_adjust_op_size(). > Yes, max read data size can be ahb_buf_size. Thus we need to check max read size with ahb_buf_size. > > + > > + switch (spi->chip_select) { > > + case 0: > > + fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0); > > + break; > > + case 1: > > + fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA2CR0); > > + break; > > + case 2: > > + fspi_writel(f, size_kb, f->iobase + FSPI_FLSHB1CR0); > > + break; > > + case 3: > > + fspi_writel(f, size_kb, f->iobase + FSPI_FLSHB2CR0); > > + break; > > + default: > > + dev_err(f->dev, "In-correct CS provided\n"); > > + return; > > You don't need to validate spi->chip_select here. This should never be invalid > and if it is, something is really wrong and your check won't help. Ok, would remove in next version. > > > + } > > + > > + dev_dbg(f->dev, "Slave device [CS:%x] selected\n", > > +spi->chip_select); > > + > > + nxp_fspi_clk_disable_unprep(f); > > + > > + ret = clk_set_rate(f->clk, rate); > > + if (ret) > > + return; > > + > > + ret = nxp_fspi_clk_prep_enable(f); > > + if (ret) > > + return; > > Missing newline line here. Ok > > > + f->selected = spi->chip_select; > > +} > > + > > +static void nxp_fspi_read_ahb(struct nxp_fspi *f, const struct > > +spi_mem_op *op) { > > + u32 len = op->data.nbytes; > > + > > + /* Read out the data directly from the AHB buffer. */ > > + memcpy_fromio(op->data.buf.in, (f->ahb_addr + op->addr.val), len); } > > + > > +static void nxp_fspi_fill_txfifo(struct nxp_fspi *f, > > + const struct spi_mem_op *op) > > +{ > > + void __iomem *base = f->iobase; > > + int i, j, ret; > > + int size, tmp_size, wm_size; > > + u32 data = 0; > > + u32 *txbuf = (u32 *) op->data.buf.out; > > + > > + /* clear the TX FIFO. */ > > + fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR); > > + > > + /* Default value of water mark level is 8 bytes. */ > > + wm_size = 8; > > + size = op->data.nbytes / wm_size; > > + for (i = 0; i < size; i++) { > > + /* Wait for TXFIFO empty */ > > + ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, > > + FSPI_INTR_IPTXWE, 0, > > + POLL_TOUT, true); > > + WARN_ON(ret); > > + > > + j = 0; > > + tmp_size = wm_size; > > + while (tmp_size > 0) { > > + data = 0; > > + memcpy(&data, txbuf, 4); > > + fspi_writel(f, data, base + FSPI_TFDR + j * 4); > > + tmp_size -= 4; > > + j++; > > + txbuf += 1; > > + } > > + fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); > > + } > > + > > + size = op->data.nbytes % wm_size; > > + if (size) { > > + /* Wait for TXFIFO empty */ > > + ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, > > + FSPI_INTR_IPTXWE, 0, > > + POLL_TOUT, true); > > + WARN_ON(ret); > > + > > + j = 0; > > + tmp_size = 0; > > + while (size > 0) { > > + data = 0; > > + tmp_size = (size < 4) ? size : 4; > > + memcpy(&data, txbuf, tmp_size); > > + fspi_writel(f, data, base + FSPI_TFDR + j * 4); > > + size -= tmp_size; > > + j++; > > + txbuf += 1; > > + } > > + fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); > > + } > > All these nested loops to fill the TX buffer and also the ones below to read the > RX buffer look much more complicated than they should really be. Can you try to > make this more readable? Yes > > Maybe something like this would work: > > for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) { > /* Wait for TXFIFO empty */ > ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, > FSPI_INTR_IPTXWE, 0, > POLL_TOUT, true); > > fspi_writel(f, op->data.buf.out + i, base + FSPI_TFDR); > fspi_writel(f, op->data.buf.out + i + 4, base + FSPI_TFDR + 4); > fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); } With this above 2 lines we are hardcoding it for read/write with watermark size as 8 bytes. Watermark size can be variable and depends on the value of IPRXFCR/IPTXFCR register with default value as 8 bytes Thus, I would still prefer to use the internal for loop instead of 2 fspi_writel(...) for FSPI_TFDR and FSPI_TFDR + 4 register write commands. > > if (i < op->data.nbytes) { > u32 data = 0; > int j; > /* Wait for TXFIFO empty */ > ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, > FSPI_INTR_IPTXWE, 0, > POLL_TOUT, true); > > for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) { > memcpy(&data, op->data.buf.out + i + j, 4); > fspi_writel(f, data, base + FSPI_TFDR + j); > } > > fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); } > > > +} > > + > > +static void nxp_fspi_read_rxfifo(struct nxp_fspi *f, > > + const struct spi_mem_op *op) > > +{ > > + void __iomem *base = f->iobase; > > + int i, j; > > + int size, tmp_size, wm_size, ret; > > + u32 tmp = 0; > > + u8 *buf = op->data.buf.in; > > + u32 len = op->data.nbytes; > > + > > + /* Default value of water mark level is 8 bytes. */ > > + wm_size = 8; > > + > > + while (len > 0) { > > + size = len / wm_size; > > + > > + for (i = 0; i < size; i++) { > > + /* Wait for RXFIFO available */ > > + ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, > > + FSPI_INTR_IPRXWA, 0, > > + POLL_TOUT, true); > > + WARN_ON(ret); > > + > > + j = 0; > > + tmp_size = wm_size; > > + while (tmp_size > 0) { > > + tmp = 0; > > + tmp = fspi_readl(f, base + FSPI_RFDR + j * 4); > > + memcpy(buf, &tmp, 4); > > + tmp_size -= 4; > > + j++; > > + buf += 4; > > + } > > + /* move the FIFO pointer */ > > + fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR); > > + len -= wm_size; > > + } > > + > > + size = len % wm_size; > > + > > + j = 0; > > + if (size) { > > + /* Wait for RXFIFO available */ > > + ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, > > + FSPI_INTR_IPRXWA, 0, > > + POLL_TOUT, true); > > + WARN_ON(ret); > > + > > + while (len > 0) { > > + tmp = 0; > > + size = (len < 4) ? len : 4; > > + tmp = fspi_readl(f, base + FSPI_RFDR + j * 4); > > + memcpy(buf, &tmp, size); > > + len -= size; > > + j++; > > + buf += size; > > + } > > + } > > + > > + /* invalid the RXFIFO */ > > + fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR); > > + /* move the FIFO pointer */ > > + fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR); > > + } > > Same here. I think this is overly complicated. > Yes, would do in next version. > > +} > > + > > +static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op > > +*op) { > > + void __iomem *base = f->iobase; > > + int seqnum = 0; > > + int err = 0; > > + u32 reg; > > + > > + reg = fspi_readl(f, base + FSPI_IPRXFCR); > > + /* invalid RXFIFO first */ > > + reg &= ~FSPI_IPRXFCR_DMA_EN; > > + reg = reg | FSPI_IPRXFCR_CLR; > > + fspi_writel(f, reg, base + FSPI_IPRXFCR); > > + > > + init_completion(&f->c); > > + > > + fspi_writel(f, op->addr.val, base + FSPI_IPCR0); > > + /* > > + * Always start the sequence at the same index since we update > > + * the LUT at each exec_op() call. And also specify the DATA > > + * length, since it's has not been specified in the LUT. > > + */ > > + fspi_writel(f, op->data.nbytes | > > + (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) | > > + (seqnum << FSPI_IPCR1_SEQNUM_SHIFT), > > + base + FSPI_IPCR1); > > + > > + /* Trigger the LUT now. */ > > + fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD); > > + > > + /* Wait for the interrupt. */ > > + if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000))) > > + err = -ETIMEDOUT; > > + > > + /* Invoke IP data read, if request is of data read. */ > > + if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN) > > + nxp_fspi_read_rxfifo(f, op); > > + > > + return err; > > +} > > + > > +static int nxp_fspi_exec_op(struct spi_mem *mem, const struct > > +spi_mem_op *op) { > > + struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master); > > + int err = 0; > > + > > + mutex_lock(&f->lock); > > + > > + /* Wait for controller being ready. */ > > + err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0, > > + FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true); > > + WARN_ON(err); > > + > > + nxp_fspi_select_mem(f, mem->spi); > > + > > + nxp_fspi_prepare_lut(f, op); > > + /* > > + * If we have large chunks of data, we read them through the AHB bus > > + * by accessing the mapped memory. In all other cases we use > > + * IP commands to access the flash. > > + */ > > + if (op->data.nbytes > (f->devtype_data->rxfifo - 4) && > > + op->data.dir == SPI_MEM_DATA_IN) { > > + nxp_fspi_read_ahb(f, op); > > + } else { > > + if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) > > + nxp_fspi_fill_txfifo(f, op); > > + > > + err = nxp_fspi_do_op(f, op); > > + > > + /* Invalidate the data in the AHB buffer. */ > > + if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) > > + nxp_fspi_invalid(f); > > E.g. in case of an erase operation or a NAND load page operation, the > invalidation is not triggered, but flash/buffer contents have changed. > So I'm not sure if this is enough... Ok, would change this and have invalidate for all operations. > > > + } > > + > > + mutex_unlock(&f->lock); > > + > > + return err; > > +} > > + > > +static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct > > +spi_mem_op *op) { > > + struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master); > > + > > + if (op->data.dir == SPI_MEM_DATA_OUT) { > > + if (op->data.nbytes > f->devtype_data->txfifo) > > + op->data.nbytes = f->devtype_data->txfifo; > > + } else { > > + if (op->data.nbytes > f->devtype_data->ahb_buf_size) > > + op->data.nbytes = f->devtype_data->ahb_buf_size; > > + else if (op->data.nbytes > (f->devtype_data->rxfifo - 4)) > > + op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8); > > You are using the same alignments as in the QSPI driver. So AHB reads will > happen in portions of ahb_buf_size, but you dont' stick to this when you map the > memory. See above. Reason mentioned above. -- Regards Yogesh Gaur > > Regards, > Frieder [...] ______________________________________________________ Linux MTD discussion mailing list http://lists.infradead.org/mailman/listinfo/linux-mtd/