On 18.03.2018 16:59, Stefan Agner wrote: > This reworks the driver to make use of ->exec_op() callback. The > command sequencer of the VF610 NFC aligns well with the new ops > interface. > > The operations are translated to a NFC command code while filling > the necessary registers. Instead of using the special status and > read ID command codes (which require to read status/ID from > special registers instead of the regular data area) the driver > now now uses the main data buffer for all commands. This > simplifies the driver as no special casing is needed. > > For control data (status byte, id bytes and parameter page) the > driver needs to reverse byte order for little endian CPUs since > the controller seems to store the bytes in big endian order in > the data buffer. > > The current state seems to pass MTD tests on a Colibri VF61. It turns out that after around 50-200 boots this leads to a kernel lockup. Reverting this patch seems to help: [ 4.327685] ubi0: default fastmap pool size: 50 [ 4.332709] ubi0: default fastmap WL pool size: 25 [ 4.338201] ubi0: attaching mtd3 [ 4.409501] random: fast init done [ 4.615404] ubi0: attached by fastmap [ 4.619563] ubi0: fastmap pool size: 50 [ 4.623631] ubi0: fastmap WL pool size: 25 [ 4.662871] ubi0: attached mtd3 (name "ubi", size 126 MiB) [ 4.669108] ubi0: PEB size: 131072 bytes (128 KiB), LEB size: 126976 bytes [ 4.676681] ubi0: min./max. I/O unit sizes: 2048/2048, sub-page size 2048 [ 4.683852] ubi0: VID header offset: 2048 (aligned 2048), data offset: 4096 [ 4.691528] ubi0: good PEBs: 1001, bad PEBs: 7, corrupted PEBs: 0 [ 4.698231] ubi0: user volume: 1, internal volumes: 1, max. volumes count: 128 [ 4.706157] ubi0: max/mean erase counter: 1/0, WL threshold: 4096, image sequence number: 1281767328 [ 4.716037] ubi0: available PEBs: 0, total reserved PEBs: 1001, PEBs reserved for bad PEB handling: 13 [ 4.726666] ubi0: background thread "ubi_bgt0d" started, PID 60 [ 4.743297] rtc-ds1307 0-0068: setting system clock to 2001-01-01 00:06:44 UTC (978307604) [ 4.756117] cfg80211: Loading compiled-in X.509 certificates for regulatory database [ 4.777983] cfg80211: Loaded X.509 cert 'sforshee: 00b28ddf47aef9cea7' [ 4.830932] hrtimer: interrupt took 30379848 ns [ 12.135872] ALSA device list: [ 12.555474] No soundcards found. [ 47.420730] INFO: rcu_sched self-detected stall on CPU [ 47.446162] 0-...!: (2592 ticks this GP) idle=3c2/1/1073741826 softirq=70/70 fqs=0 [ 47.464623] (t=2600 jiffies g=-242 c=-243 q=2) [ 47.475431] rcu_sched kthread starved for 2600 jiffies! g4294967054 c4294967053 f0x0 RCU_GP_WAIT_FQS(3) ->state=0x402 ->cpu=0 [ 47.489822] RCU grace-period kthread stack dump: [ 47.497199] rcu_sched I 0 10 2 0x00000000 [ 47.506163] Backtrace: [ 47.514811] [<c0bd47a0>] (__schedule) from [<c0bd52f0>] (schedule+0x48/0xac) [ 47.525962] r10:c10b26d9 r9:c1005900 r8:c7cdd500 r7:c10088c8 r6:c7cdd500 r5:c4129ec4 [ 47.536345] r4:ffffe000 [ 47.542663] [<c0bd52a8>] (schedule) from [<c0bda574>] (schedule_timeout+0xa0/0x564) [ 47.553692] r5:c4129ec4 r4:ffff932e [ 47.563375] [<c0bda4d4>] (schedule_timeout) from [<c01a6eac>] (rcu_gp_kthread+0x670/0x189c) [ 47.575609] r10:c101ce78 r9:c101cbc0 r8:c1005900 r7:ffffe000 r6:00000402 r5:c101ce50 [ 47.585966] r4:00000001 [ 47.592163] [<c01a683c>] (rcu_gp_kthread) from [<c0151448>] (kthread+0x154/0x16c) [ 47.603068] r7:c4128000 [ 47.608760] [<c01512f4>] (kthread) from [<c01010b4>] (ret_from_fork+0x14/0x20) [ 47.619396] Exception stack(0xc4129fb0 to 0xc4129ff8) [ 47.627264] 9fa0: 00000000 00000000 00000000 00000000 [ 47.638076] 9fc0: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 [ 47.648825] 9fe0: 00000000 00000000 00000000 00000000 00000013 00000000 [ 47.658059] r10:00000000 r9:00000000 r8:00000000 r7:00000000 r6:00000000 r5:c01512f4 [ 47.668567] r4:c40f7100 [ 47.682794] NMI backtrace for cpu 0 [ 47.692049] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 4.18.0-rc4 #120 [ 47.701839] Hardware name: Freescale Vybrid VF5xx/VF6xx (Device Tree) [ 47.710436] Backtrace: [ 47.717705] [<c010e814>] (dump_backtrace) from [<c010eac4>] (show_stack+0x20/0x24) [ 47.728904] r7:00000000 r6:60000193 r5:00000000 r4:c10abff4 [ 47.738832] [<c010eaa4>] (show_stack) from [<c0bbd144>] (dump_stack+0xb4/0xec) [ 47.750608] [<c0bbd090>] (dump_stack) from [<c0bc3ca0>] (nmi_cpu_backtrace+0x10c/0x120) [ 47.762041] r10:80000193 r9:c1008970 r8:c0c02be8 r7:00000000 r6:00000000 r5:00000000 [ 47.772442] r4:c182d928 r3:b15a9cad [ 47.778946] [<c0bc3b94>] (nmi_cpu_backtrace) from [<c0bc3d88>] (nmi_trigger_cpumask_backtrace+0xd4/0x128) [ 47.791492] r7:00000000 r6:c01105f4 r5:c100bef0 r4:00000000 [ 47.800780] [<c0bc3cb4>] (nmi_trigger_cpumask_backtrace) from [<c011146c>] (arch_trigger_cpumask_backtrace+0x1c/0x24) [ 47.814575] r9:c1008970 r8:00000240 r7:c0c02be4 r6:c10088f4 r5:c101cbc0 r4:c101cbc0 [ 47.826007] [<c0111450>] (arch_trigger_cpumask_backtrace) from [<c01adfd4>] (rcu_dump_cpu_stacks+0xb4/0xf4) [ 47.839338] [<c01adf20>] (rcu_dump_cpu_stacks) from [<c01acc44>] (rcu_check_callbacks+0x7ec/0xaa4) [ 47.851266] r10:c1008e38 r9:c1008968 r8:c101cbc0 r7:06d21000 r6:c7ce2d00 r5:c0fc1d00 [ 47.861815] r4:c101cbc0 [ 47.868917] [<c01ac458>] (rcu_check_callbacks) from [<c01b58f8>] (update_process_times+0x40/0x6c) [ 47.881573] r10:c10088ec r9:c7cde600 r8:c01cb8f4 r7:0000000b r6:00000000 r5:c4108000 [ 47.891955] r4:ffffe000 [ 47.898511] [<c01b58b8>] (update_process_times) from [<c01cb68c>] (tick_sched_handle+0x64/0x68) [ 47.910900] r7:0000000b r6:09f63806 r5:c4103d38 r4:c7cdea98 [ 47.919562] [<c01cb628>] (tick_sched_handle) from [<c01cb960>] (tick_sched_timer+0x6c/0xd0) [ 47.932061] [<c01cb8f4>] (tick_sched_timer) from [<c01b66e0>] (__hrtimer_run_queues+0x194/0x634) [ 47.944036] r7:c10416d4 r6:00000000 r5:c7cdea98 r4:c7cde660 [ 47.952849] [<c01b654c>] (__hrtimer_run_queues) from [<c01b7e70>] (hrtimer_interrupt+0x124/0x2ec) [ 47.964708] r10:c7cde740 r9:ffffffff r8:7fffffff r7:c7cde700 r6:00000003 r5:20000193 [ 47.975066] r4:c7cde600 [ 47.980799] [<c01b7d4c>] (hrtimer_interrupt) from [<c087f068>] (gt_clockevent_interrupt+0x4c/0x68) [ 47.992829] r10:c10b26ac r9:00000010 r8:c1008e38 r7:c10088ec r6:c800c200 r5:c7ce3b00 [ 48.003230] r4:00000001 [ 48.010306] [<c087f01c>] (gt_clockevent_interrupt) from [<c01970e8>] (handle_percpu_devid_irq+0xec/0x430) [ 48.023497] r7:c10088ec r6:c100905c r5:c40dc680 r4:c40c9a00 [ 48.032720] [<c0196ffc>] (handle_percpu_devid_irq) from [<c0191a68>] (generic_handle_irq+0x30/0x44) [ 48.045102] r10:c1041928 r9:c401a400 r8:00000001 r7:00000000 r6:c1008e38 r5:00000010 [ 48.055221] r4:c0fc112c [ 48.060592] [<c0191a38>] (generic_handle_irq) from [<c0191af0>] (__handle_domain_irq+0x74/0xf0) [ 48.073419] [<c0191a7c>] (__handle_domain_irq) from [<c01023dc>] (gic_handle_irq+0x68/0xcc) [ 48.084801] r9:c4103d38 r8:c100905c r7:c8002100 r6:000003ff r5:000003eb r4:c800210c [ 48.095734] [<c0102374>] (gic_handle_irq) from [<c0101a30>] (__irq_svc+0x70/0x98) [ 48.106321] Exception stack(0xc4103d38 to 0xc4103d80) [ 48.113845] 3d20: 00000001 00000001 [ 48.124357] 3d40: 00000000 c4108000 c7ce2600 00000000 c102d7f8 c410e400 00000000 c0bd4a6c [ 48.134917] 3d60: c4108000 c4103d9c 00000000 c4103d88 c0180a74 c0bdb778 20000013 ffffffff [ 48.145628] r10:c4108000 r9:c4102000 r8:00000000 r7:c4103d6c r6:ffffffff r5:20000013 [ 48.155699] r4:c0bdb778 [ 48.163614] [<c0bdb740>] (_raw_spin_unlock_irq) from [<c015a310>] (finish_task_switch+0xbc/0x274) [ 48.176306] r5:00000000 r4:c7ce2600 [ 48.183676] [<c015a254>] (finish_task_switch) from [<c0bd4a6c>] (__schedule+0x2cc/0xad4) [ 48.195315] r10:c10b3ae0 r9:c102d7f8 r8:00000000 r7:c7ce2610 r6:c42a8000 r5:c4108000 [ 48.205648] r4:c7ce2600 [ 48.210929] [<c0bd47a0>] (__schedule) from [<c0bd528c>] (preempt_schedule_common+0x18/0x34) [ 48.222162] r10:c10b7d00 r9:c40dd3c0 r8:c02a7900 r7:c1008f84 r6:ffffff9c r5:006000c0 [ 48.232651] r4:ffffe000 [ 48.237849] [<c0bd5274>] (preempt_schedule_common) from [<c0bd54bc>] (_cond_resched+0x50/0x58) [ 48.249555] r5:006000c0 r4:00000001 [ 48.257127] [<c0bd546c>] (_cond_resched) from [<c028f728>] (kmem_cache_alloc+0x1f0/0x31c) [ 48.268169] r5:006000c0 r4:006000c0 [ 48.275478] [<c028f538>] (kmem_cache_alloc) from [<c02a7900>] (getname_flags+0x30/0x160) [ 48.286767] r10:c10b7d00 r9:00000000 r8:00000000 r7:c1008f84 r6:ffffff9c r5:c0e0560c [ 48.297226] r4:00000002 [ 48.302911] [<c02a78d0>] (getname_flags) from [<c02a7a50>] (getname+0x20/0x24) [ 48.313300] r10:c10b7d00 r9:c10088ec r8:c0f7c85c r7:00000000 r6:ffffff9c r5:c10088c8 [ 48.323768] r4:00000002 r3:00000002 [ 48.330039] [<c02a7a30>] (getname) from [<c029854c>] (do_sys_open+0xfc/0x21c) [ 48.341558] [<c0298450>] (do_sys_open) from [<c0f01878>] (kernel_init_freeable+0x3a4/0x460) [ 48.352809] r10:c10b7d00 r9:c10088ec r8:c0f7c85c r7:c10b7d00 r6:c10b3900 r5:c0fb7140 [ 48.363206] r4:00000008 [ 48.370025] [<c0f014d4>] (kernel_init_freeable) from [<c0bd2704>] (kernel_init+0x18/0x128) [ 48.381584] r10:00000000 r9:00000000 r8:00000000 r7:00000000 r6:00000000 r5:c0bd26ec [ 48.392130] r4:00000000 [ 48.397585] [<c0bd26ec>] (kernel_init) from [<c01010b4>] (ret_from_fork+0x14/0x20) [ 48.407874] Exception stack(0xc4103fb0 to 0xc4103ff8) [ 48.415229] 3fa0: 00000000 00000000 00000000 00000000 [ 48.425675] 3fc0: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 [ 48.436255] 3fe0: 00000000 00000000 00000000 00000000 00000013 00000000 [ 48.445286] r5:c0bd26ec r4:00000000 Still need to investigate further, but if anybody has an idea/spot can spot the potential problem, I am all ears :-) -- Stefan > > Signed-off-by: Stefan Agner <stefan at agner.ch> > Reviewed-by: Miquel Raynal <miquel.raynal at bootlin.com> > --- > drivers/mtd/nand/raw/vf610_nfc.c | 423 +++++++++++++++++++++++++++++++++++++-- > 1 file changed, 411 insertions(+), 12 deletions(-) > > diff --git a/drivers/mtd/nand/raw/vf610_nfc.c b/drivers/mtd/nand/raw/vf610_nfc.c > index 5d7a1f8f580f..c027a3a6a005 100644 > --- a/drivers/mtd/nand/raw/vf610_nfc.c > +++ b/drivers/mtd/nand/raw/vf610_nfc.c > @@ -74,6 +74,22 @@ > #define RESET_CMD_CODE 0x4040 > #define STATUS_READ_CMD_CODE 0x4068 > > +/* NFC_CMD2[CODE] controller cycle bit masks */ > +#define COMMAND_CMD_BYTE1 BIT(14) > +#define COMMAND_CAR_BYTE1 BIT(13) > +#define COMMAND_CAR_BYTE2 BIT(12) > +#define COMMAND_RAR_BYTE1 BIT(11) > +#define COMMAND_RAR_BYTE2 BIT(10) > +#define COMMAND_RAR_BYTE3 BIT(9) > +#define COMMAND_NADDR_BYTES(x) GENMASK(13, 13 - (x) + 1) > +#define COMMAND_WRITE_DATA BIT(8) > +#define COMMAND_CMD_BYTE2 BIT(7) > +#define COMMAND_RB_HANDSHAKE BIT(6) > +#define COMMAND_READ_DATA BIT(5) > +#define COMMAND_CMD_BYTE3 BIT(4) > +#define COMMAND_READ_STATUS BIT(3) > +#define COMMAND_READ_ID BIT(2) > + > /* NFC ECC mode define */ > #define ECC_BYPASS 0 > #define ECC_45_BYTE 6 > @@ -97,10 +113,13 @@ > /* NFC_COL_ADDR Field */ > #define COL_ADDR_MASK 0x0000FFFF > #define COL_ADDR_SHIFT 0 > +#define COL_ADDR(pos, val) (((val) & 0xFF) << (8 * (pos))) > > /* NFC_ROW_ADDR Field */ > #define ROW_ADDR_MASK 0x00FFFFFF > #define ROW_ADDR_SHIFT 0 > +#define ROW_ADDR(pos, val) (((val) & 0xFF) << (8 * (pos))) > + > #define ROW_ADDR_CHIP_SEL_RB_MASK 0xF0000000 > #define ROW_ADDR_CHIP_SEL_RB_SHIFT 28 > #define ROW_ADDR_CHIP_SEL_MASK 0x0F000000 > @@ -165,6 +184,12 @@ struct vf610_nfc { > enum vf610_nfc_variant variant; > struct clk *clk; > bool use_hw_ecc; > + /* > + * Indicate that user data is accessed (full page/oob). This is > + * useful to indicate the driver whether to swap byte endianness. > + * See comments in vf610_nfc_rd_from_sram/vf610_nfc_wr_to_sram. > + */ > + bool data_access; > u32 ecc_mode; > }; > > @@ -173,6 +198,11 @@ static inline struct vf610_nfc *mtd_to_nfc(struct mtd_info *mtd) > return container_of(mtd_to_nand(mtd), struct vf610_nfc, chip); > } > > +static inline struct vf610_nfc *chip_to_nfc(struct nand_chip *chip) > +{ > + return container_of(chip, struct vf610_nfc, chip); > +} > + > static inline u32 vf610_nfc_read(struct vf610_nfc *nfc, uint reg) > { > return readl(nfc->regs + reg); > @@ -214,6 +244,86 @@ static inline void vf610_nfc_memcpy(void *dst, const void __iomem *src, > memcpy(dst, src, n); > } > > +static inline bool vf610_nfc_kernel_is_little_endian(void) > +{ > +#ifdef __LITTLE_ENDIAN > + return true; > +#else > + return false; > +#endif > +} > + > +/** > + * Read accessor for internal SRAM buffer > + * @dst: destination address in regular memory > + * @src: source address in SRAM buffer > + * @len: bytes to copy > + * @fix_endian: Fix endianness if required > + * > + * Use this accessor for the internal SRAM buffers. On the ARM > + * Freescale Vybrid SoC it's known that the driver can treat > + * the SRAM buffer as if it's memory. Other platform might need > + * to treat the buffers differently. > + * > + * The controller stores bytes from the NAND chip internally in big > + * endianness. On little endian platforms such as Vybrid this leads > + * to reversed byte order. > + * For performance reason (and earlier probably due to unawareness) > + * the driver avoids correcting endianness where it has control over > + * write and read side (e.g. page wise data access). > + */ > +static inline void vf610_nfc_rd_from_sram(void *dst, const void __iomem *src, > + size_t len, bool fix_endian) > +{ > + if (vf610_nfc_kernel_is_little_endian() && fix_endian) { > + unsigned int i; > + > + for (i = 0; i < len; i += 4) { > + u32 val = be32_to_cpu(__raw_readl(src + i)); > + > + memcpy(dst + i, &val, min(sizeof(val), len - i)); > + } > + } else { > + memcpy_fromio(dst, src, len); > + } > +} > + > +/** > + * Write accessor for internal SRAM buffer > + * @dst: destination address in SRAM buffer > + * @src: source address in regular memory > + * @len: bytes to copy > + * @fix_endian: Fix endianness if required > + * > + * Use this accessor for the internal SRAM buffers. On the ARM > + * Freescale Vybrid SoC it's known that the driver can treat > + * the SRAM buffer as if it's memory. Other platform might need > + * to treat the buffers differently. > + * > + * The controller stores bytes from the NAND chip internally in big > + * endianness. On little endian platforms such as Vybrid this leads > + * to reversed byte order. > + * For performance reason (and earlier probably due to unawareness) > + * the driver avoids correcting endianness where it has control over > + * write and read side (e.g. page wise data access). > + */ > +static inline void vf610_nfc_wr_to_sram(void __iomem *dst, const void *src, > + size_t len, bool fix_endian) > +{ > + if (vf610_nfc_kernel_is_little_endian() && fix_endian) { > + unsigned int i; > + > + for (i = 0; i < len; i += 4) { > + u32 val; > + > + memcpy(&val, src + i, min(sizeof(val), len - i)); > + __raw_writel(cpu_to_be32(val), dst + i); > + } > + } else { > + memcpy_toio(dst, src, len); > + } > +} > + > /* Clear flags for upcoming command */ > static inline void vf610_nfc_clear_status(struct vf610_nfc *nfc) > { > @@ -489,6 +599,164 @@ static int vf610_nfc_dev_ready(struct mtd_info *mtd) > return 1; > } > > +static inline void vf610_nfc_run(struct vf610_nfc *nfc, u32 col, u32 row, > + u32 cmd1, u32 cmd2, u32 trfr_sz) > +{ > + vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK, > + COL_ADDR_SHIFT, col); > + > + vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK, > + ROW_ADDR_SHIFT, row); > + > + vf610_nfc_write(nfc, NFC_SECTOR_SIZE, trfr_sz); > + vf610_nfc_write(nfc, NFC_FLASH_CMD1, cmd1); > + vf610_nfc_write(nfc, NFC_FLASH_CMD2, cmd2); > + > + dev_dbg(nfc->dev, > + "col 0x%04x, row 0x%08x, cmd1 0x%08x, cmd2 0x%08x, len %d\n", > + col, row, cmd1, cmd2, trfr_sz); > + > + vf610_nfc_done(nfc); > +} > + > +static inline const struct nand_op_instr * > +vf610_get_next_instr(const struct nand_subop *subop, int *op_id) > +{ > + if (*op_id + 1 >= subop->ninstrs) > + return NULL; > + > + (*op_id)++; > + > + return &subop->instrs[*op_id]; > +} > + > +static int vf610_nfc_cmd(struct nand_chip *chip, > + const struct nand_subop *subop) > +{ > + const struct nand_op_instr *instr; > + struct vf610_nfc *nfc = chip_to_nfc(chip); > + int op_id = -1, trfr_sz = 0, offset; > + u32 col = 0, row = 0, cmd1 = 0, cmd2 = 0, code = 0; > + bool force8bit = false; > + > + /* > + * Some ops are optional, but the hardware requires the operations > + * to be in this exact order. > + * The op parser enforces the order and makes sure that there isn't > + * a read and write element in a single operation. > + */ > + instr = vf610_get_next_instr(subop, &op_id); > + if (!instr) > + return -EINVAL; > + > + if (instr && instr->type == NAND_OP_CMD_INSTR) { > + cmd2 |= instr->ctx.cmd.opcode << CMD_BYTE1_SHIFT; > + code |= COMMAND_CMD_BYTE1; > + > + instr = vf610_get_next_instr(subop, &op_id); > + } > + > + if (instr && instr->type == NAND_OP_ADDR_INSTR) { > + int naddrs = nand_subop_get_num_addr_cyc(subop, op_id); > + int i = nand_subop_get_addr_start_off(subop, op_id); > + > + for (; i < naddrs; i++) { > + u8 val = instr->ctx.addr.addrs[i]; > + > + if (i < 2) > + col |= COL_ADDR(i, val); > + else > + row |= ROW_ADDR(i - 2, val); > + } > + code |= COMMAND_NADDR_BYTES(naddrs); > + > + instr = vf610_get_next_instr(subop, &op_id); > + } > + > + if (instr && instr->type == NAND_OP_DATA_OUT_INSTR) { > + trfr_sz = nand_subop_get_data_len(subop, op_id); > + offset = nand_subop_get_data_start_off(subop, op_id); > + force8bit = instr->ctx.data.force_8bit; > + > + /* > + * Don't fix endianness on page access for historical reasons. > + * See comment in vf610_nfc_wr_to_sram > + */ > + vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0) + offset, > + instr->ctx.data.buf.out + offset, > + trfr_sz, !nfc->data_access); > + code |= COMMAND_WRITE_DATA; > + > + instr = vf610_get_next_instr(subop, &op_id); > + } > + > + if (instr && instr->type == NAND_OP_CMD_INSTR) { > + cmd1 |= instr->ctx.cmd.opcode << CMD_BYTE2_SHIFT; > + code |= COMMAND_CMD_BYTE2; > + > + instr = vf610_get_next_instr(subop, &op_id); > + } > + > + if (instr && instr->type == NAND_OP_WAITRDY_INSTR) { > + code |= COMMAND_RB_HANDSHAKE; > + > + instr = vf610_get_next_instr(subop, &op_id); > + } > + > + if (instr && instr->type == NAND_OP_DATA_IN_INSTR) { > + trfr_sz = nand_subop_get_data_len(subop, op_id); > + offset = nand_subop_get_data_start_off(subop, op_id); > + force8bit = instr->ctx.data.force_8bit; > + > + code |= COMMAND_READ_DATA; > + } > + > + if (force8bit && (chip->options & NAND_BUSWIDTH_16)) > + vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT); > + > + cmd2 |= code << CMD_CODE_SHIFT; > + > + vf610_nfc_run(nfc, col, row, cmd1, cmd2, trfr_sz); > + > + if (instr && instr->type == NAND_OP_DATA_IN_INSTR) { > + /* > + * Don't fix endianness on page access for historical reasons. > + * See comment in vf610_nfc_rd_from_sram > + */ > + vf610_nfc_rd_from_sram(instr->ctx.data.buf.in + offset, > + nfc->regs + NFC_MAIN_AREA(0) + offset, > + trfr_sz, !nfc->data_access); > + } > + > + if (force8bit && (chip->options & NAND_BUSWIDTH_16)) > + vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT); > + > + return 0; > +} > + > +static const struct nand_op_parser vf610_nfc_op_parser = NAND_OP_PARSER( > + NAND_OP_PARSER_PATTERN(vf610_nfc_cmd, > + NAND_OP_PARSER_PAT_CMD_ELEM(true), > + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5), > + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, PAGE_2K + OOB_MAX), > + NAND_OP_PARSER_PAT_CMD_ELEM(true), > + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), > + NAND_OP_PARSER_PATTERN(vf610_nfc_cmd, > + NAND_OP_PARSER_PAT_CMD_ELEM(true), > + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5), > + NAND_OP_PARSER_PAT_CMD_ELEM(true), > + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), > + NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, PAGE_2K + OOB_MAX)), > + ); > + > +static int vf610_nfc_exec_op(struct nand_chip *chip, > + const struct nand_operation *op, > + bool check_only) > +{ > + return nand_op_parser_exec_op(chip, &vf610_nfc_op_parser, op, > + check_only); > +} > + > /* > * This function supports Vybrid only (MPC5125 would have full RB and four CS) > */ > @@ -526,9 +794,9 @@ static inline int vf610_nfc_correct_data(struct mtd_info *mtd, uint8_t *dat, > if (!(ecc_status & ECC_STATUS_MASK)) > return ecc_count; > > - /* Read OOB without ECC unit enabled */ > - vf610_nfc_command(mtd, NAND_CMD_READOOB, 0, page); > - vf610_nfc_read_buf(mtd, oob, mtd->oobsize); > + nfc->data_access = true; > + nand_read_oob_op(&nfc->chip, page, 0, oob, mtd->oobsize); > + nfc->data_access = false; > > /* > * On an erased page, bit count (including OOB) should be zero or > @@ -539,15 +807,51 @@ static inline int vf610_nfc_correct_data(struct mtd_info *mtd, uint8_t *dat, > flips_threshold); > } > > +static void vf610_nfc_fill_row(struct nand_chip *chip, int page, u32 *code, > + u32 *row) > +{ > + *row = ROW_ADDR(0, page & 0xff) | ROW_ADDR(1, page >> 8); > + *code |= COMMAND_RAR_BYTE1 | COMMAND_RAR_BYTE2; > + > + if (chip->options & NAND_ROW_ADDR_3) { > + *row |= ROW_ADDR(2, page >> 16); > + *code |= COMMAND_RAR_BYTE3; > + } > +} > + > static int vf610_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip, > uint8_t *buf, int oob_required, int page) > { > - int eccsize = chip->ecc.size; > + struct vf610_nfc *nfc = mtd_to_nfc(mtd); > + int trfr_sz = mtd->writesize + mtd->oobsize; > + u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0; > int stat; > > - nand_read_page_op(chip, page, 0, buf, eccsize); > + cmd2 |= NAND_CMD_READ0 << CMD_BYTE1_SHIFT; > + code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2; > + > + vf610_nfc_fill_row(chip, page, &code, &row); > + > + cmd1 |= NAND_CMD_READSTART << CMD_BYTE2_SHIFT; > + code |= COMMAND_CMD_BYTE2 | COMMAND_RB_HANDSHAKE | COMMAND_READ_DATA; > + > + cmd2 |= code << CMD_CODE_SHIFT; > + > + vf610_nfc_ecc_mode(nfc, nfc->ecc_mode); > + vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz); > + vf610_nfc_ecc_mode(nfc, ECC_BYPASS); > + > + /* > + * Don't fix endianness on page access for historical reasons. > + * See comment in vf610_nfc_rd_from_sram > + */ > + vf610_nfc_rd_from_sram(buf, nfc->regs + NFC_MAIN_AREA(0), > + mtd->writesize, false); > if (oob_required) > - vf610_nfc_read_buf(mtd, chip->oob_poi, mtd->oobsize); > + vf610_nfc_rd_from_sram(chip->oob_poi, > + nfc->regs + NFC_MAIN_AREA(0) + > + mtd->writesize, > + mtd->oobsize, false); > > stat = vf610_nfc_correct_data(mtd, buf, chip->oob_poi, page); > > @@ -564,14 +868,103 @@ static int vf610_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip, > const uint8_t *buf, int oob_required, int page) > { > struct vf610_nfc *nfc = mtd_to_nfc(mtd); > + int trfr_sz = mtd->writesize + mtd->oobsize; > + u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0; > + u8 status; > + int ret; > > - nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); > - if (oob_required) > - vf610_nfc_write_buf(mtd, chip->oob_poi, mtd->oobsize); > + cmd2 |= NAND_CMD_SEQIN << CMD_BYTE1_SHIFT; > + code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2; > + > + vf610_nfc_fill_row(chip, page, &code, &row); > + > + cmd1 |= NAND_CMD_PAGEPROG << CMD_BYTE2_SHIFT; > + code |= COMMAND_CMD_BYTE2 | COMMAND_WRITE_DATA; > + > + /* > + * Don't fix endianness on page access for historical reasons. > + * See comment in vf610_nfc_wr_to_sram > + */ > + vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0), buf, > + mtd->writesize, false); > + > + code |= COMMAND_RB_HANDSHAKE; > + cmd2 |= code << CMD_CODE_SHIFT; > + > + vf610_nfc_ecc_mode(nfc, nfc->ecc_mode); > + vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz); > + vf610_nfc_ecc_mode(nfc, ECC_BYPASS); > + > + ret = nand_status_op(chip, &status); > + if (ret) > + return ret; > + > + if (status & NAND_STATUS_FAIL) > + return -EIO; > + > + return 0; > +} > + > +static int vf610_nfc_read_page_raw(struct mtd_info *mtd, > + struct nand_chip *chip, u8 *buf, > + int oob_required, int page) > +{ > + struct vf610_nfc *nfc = mtd_to_nfc(mtd); > + int ret; > + > + nfc->data_access = true; > + ret = nand_read_page_raw(mtd, chip, buf, oob_required, page); > + nfc->data_access = false; > + > + return ret; > +} > + > +static int vf610_nfc_write_page_raw(struct mtd_info *mtd, > + struct nand_chip *chip, const u8 *buf, > + int oob_required, int page) > +{ > + struct vf610_nfc *nfc = mtd_to_nfc(mtd); > + int ret; > + > + nfc->data_access = true; > + ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); > + if (!ret && oob_required) > + ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, > + false); > + nfc->data_access = false; > + > + if (ret) > + return ret; > + > + return nand_prog_page_end_op(chip); > +} > + > +static int vf610_nfc_read_oob(struct mtd_info *mtd, struct nand_chip *chip, > + int page) > +{ > + struct vf610_nfc *nfc = mtd_to_nfc(mtd); > + int ret; > + > + nfc->data_access = true; > + ret = nand_read_oob_std(mtd, chip, page); > + nfc->data_access = false; > + > + return ret; > +} > + > +static int vf610_nfc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, > + int page) > +{ > + struct vf610_nfc *nfc = mtd_to_nfc(mtd); > + int ret; > + > + nfc->data_access = true; > + ret = nand_prog_page_begin_op(chip, page, mtd->writesize, > + chip->oob_poi, mtd->oobsize); > + nfc->data_access = false; > > - /* Always write whole page including OOB due to HW ECC */ > - nfc->use_hw_ecc = true; > - nfc->write_sz = mtd->writesize + mtd->oobsize; > + if (ret) > + return ret; > > return nand_prog_page_end_op(chip); > } > @@ -590,6 +983,7 @@ static void vf610_nfc_preinit_controller(struct vf610_nfc *nfc) > vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT); > vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT); > vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT); > + vf610_nfc_ecc_mode(nfc, ECC_BYPASS); > > /* Disable virtual pages, only one elementary transfer unit */ > vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK, > @@ -686,6 +1080,7 @@ static int vf610_nfc_probe(struct platform_device *pdev) > chip->read_word = vf610_nfc_read_word; > chip->read_buf = vf610_nfc_read_buf; > chip->write_buf = vf610_nfc_write_buf; > + chip->exec_op = vf610_nfc_exec_op; > chip->select_chip = vf610_nfc_select_chip; > chip->onfi_set_features = nand_onfi_get_set_features_notsupp; > chip->onfi_get_features = nand_onfi_get_set_features_notsupp; > @@ -755,6 +1150,10 @@ static int vf610_nfc_probe(struct platform_device *pdev) > > chip->ecc.read_page = vf610_nfc_read_page; > chip->ecc.write_page = vf610_nfc_write_page; > + chip->ecc.read_page_raw = vf610_nfc_read_page_raw; > + chip->ecc.write_page_raw = vf610_nfc_write_page_raw; > + chip->ecc.read_oob = vf610_nfc_read_oob; > + chip->ecc.write_oob = vf610_nfc_write_oob; > > chip->ecc.size = PAGE_2K; > }