On Mon, Apr 15, 2024 at 06:36:39PM +0100, Mark Rutland wrote: > On Mon, Apr 15, 2024 at 09:52:41AM +0200, Peter Zijlstra wrote: > > On Thu, Apr 11, 2024 at 07:00:41PM +0300, Mike Rapoport wrote: > > > +/** > > > + * enum execmem_type - types of executable memory ranges > > > + * > > > + * There are several subsystems that allocate executable memory. > > > + * Architectures define different restrictions on placement, > > > + * permissions, alignment and other parameters for memory that can be used > > > + * by these subsystems. > > > + * Types in this enum identify subsystems that allocate executable memory > > > + * and let architectures define parameters for ranges suitable for > > > + * allocations by each subsystem. > > > + * > > > + * @EXECMEM_DEFAULT: default parameters that would be used for types that > > > + * are not explcitly defined. > > > + * @EXECMEM_MODULE_TEXT: parameters for module text sections > > > + * @EXECMEM_KPROBES: parameters for kprobes > > > + * @EXECMEM_FTRACE: parameters for ftrace > > > + * @EXECMEM_BPF: parameters for BPF > > > + * @EXECMEM_TYPE_MAX: > > > + */ > > > +enum execmem_type { > > > + EXECMEM_DEFAULT, > > > + EXECMEM_MODULE_TEXT = EXECMEM_DEFAULT, > > > + EXECMEM_KPROBES, > > > + EXECMEM_FTRACE, > > > + EXECMEM_BPF, > > > + EXECMEM_TYPE_MAX, > > > +}; > > > > Can we please get a break-down of how all these types are actually > > different from one another? > > > > I'm thinking some platforms have a tiny immediate space (arm64 comes to > > mind) and has less strict placement constraints for some of them? > > Yeah, and really I'd *much* rather deal with that in arch code, as I have said > several times. > > For arm64 we have two bsaic restrictions: > > 1) Direct branches can go +/-128M > We can expand this range by having direct branches go to PLTs, at a > performance cost. > > 2) PREL32 relocations can go +/-2G > We cannot expand this further. > > * We don't need to allocate memory for ftrace. We do not use trampolines. > > * Kprobes XOL areas don't care about either of those; we don't place any > PC-relative instructions in those. Maybe we want to in future. > > * Modules care about both; we'd *prefer* to place them within +/-128M of all > other kernel/module code, but if there's no space we can use PLTs and expand > that to +/-2G. Since modules can refreence other modules, that ends up > actually being halved, and modules have to fit within some 2G window that > also covers the kernel. > > * I'm not sure about BPF's requirements; it seems happy doing the same as > modules. BPF are happy with vmalloc(). > So if we *must* use a common execmem allocator, what we'd reall want is our own > types, e.g. > > EXECMEM_ANYWHERE > EXECMEM_NOPLT > EXECMEM_PREL32 > > ... and then we use those in arch code to implement module_alloc() and friends. I'm looking at execmem_types more as definition of the consumers, maybe I should have named the enum execmem_consumer at the first place. And the arch constrains defined in struct execmem_range describe how memory should be allocated for each consumer. These constraints are defined early at boot and remain static, so initializing them once and letting a common allocator use them makes perfect sense to me. I agree that fallback_{start,end} are not ideal, but we have 3 architectures that have preferred and secondary range for modules. And arm and powerpc use the same logic for kprobes as well, and I don't see why this code should be duplicated. And, for instance, if you decide to place PC-relative instructions if kprobes XOL areas, you'd only need to update execmem_range for kprobes to be more like the range for modules. With central allocator it's easier to deal with the things like VM_FLUSH_RESET_PERMS and caching of ROX memory and I think it will be more maintainable that module_alloc(), alloc_insn_page() and bpf_jit_alloc_exec() spread all over the place. > Mark. -- Sincerely yours, Mike.