On Mon, Sep 21, 2015 at 11:52:41AM +0100, Mel Gorman wrote: > High-order watermark checking exists for two reasons -- kswapd high-order > awareness and protection for high-order atomic requests. Historically the > kernel depended on MIGRATE_RESERVE to preserve min_free_kbytes as high-order > free pages for as long as possible. This patch introduces MIGRATE_HIGHATOMIC > that reserves pageblocks for high-order atomic allocations on demand and > avoids using those blocks for order-0 allocations. This is more flexible > and reliable than MIGRATE_RESERVE was. > > A MIGRATE_HIGHORDER pageblock is created when an atomic high-order allocation > request steals a pageblock but limits the total number to 1% of the zone. > Callers that speculatively abuse atomic allocations for long-lived > high-order allocations to access the reserve will quickly fail. Note that > SLUB is currently not such an abuser as it reclaims at least once. It is > possible that the pageblock stolen has few suitable high-order pages and > will need to steal again in the near future but there would need to be > strong justification to search all pageblocks for an ideal candidate. > > The pageblocks are unreserved if an allocation fails after a direct > reclaim attempt. > > The watermark checks account for the reserved pageblocks when the allocation > request is not a high-order atomic allocation. > > The reserved pageblocks can not be used for order-0 allocations. This may > allow temporary wastage until a failed reclaim reassigns the pageblock. This > is deliberate as the intent of the reservation is to satisfy a limited > number of atomic high-order short-lived requests if the system requires them. > > The stutter benchmark was used to evaluate this but while it was running > there was a systemtap script that randomly allocated between 1 high-order > page and 12.5% of memory's worth of order-3 pages using GFP_ATOMIC. This > is much larger than the potential reserve and it does not attempt to be > realistic. It is intended to stress random high-order allocations from > an unknown source, show that there is a reduction in failures without > introducing an anomaly where atomic allocations are more reliable than > regular allocations. The amount of memory reserved varied throughout the > workload as reserves were created and reclaimed under memory pressure. The > allocation failures once the workload warmed up were as follows; > > 4.2-rc5-vanilla 70% > 4.2-rc5-atomic-reserve 56% > > The failure rate was also measured while building multiple kernels. The > failure rate was 14% but is 6% with this patch applied. > > Overall, this is a small reduction but the reserves are small relative > to the number of allocation requests. In early versions of the patch, > the failure rate reduced by a much larger amount but that required much > larger reserves and perversely made atomic allocations seem more reliable > than regular allocations. > > Signed-off-by: Mel Gorman <mgorman@xxxxxxxxxxxxxxxxxxx> > Acked-by: Vlastimil Babka <vbabka@xxxxxxx> Cool, this is much more obvious than trusting the MIGRATE_RESERVE mechanism for higher order atomics. Acked-by: Johannes Weiner <hannes@xxxxxxxxxxx> -- To unsubscribe, send a message with 'unsubscribe linux-mm' in the body to majordomo@xxxxxxxxx. For more info on Linux MM, see: http://www.linux-mm.org/ . Don't email: <a href=mailto:"dont@xxxxxxxxx"> email@xxxxxxxxx </a>