Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@xxxxxxxxxxxxxxx> Tested-by: Sasha Levin <sasha.levin@xxxxxxxxxx> Acked-by: Vlastimil Babka <vbabka@xxxxxxx> --- include/linux/huge_mm.h | 4 ++ include/linux/mm.h | 2 + mm/huge_memory.c | 127 ++++++++++++++++++++++++++++++++++++++++++++++-- mm/migrate.c | 1 + mm/page_alloc.c | 2 +- mm/rmap.c | 7 ++- 6 files changed, 138 insertions(+), 5 deletions(-) diff --git a/include/linux/huge_mm.h b/include/linux/huge_mm.h index 89981a042d85..c1cca36c73db 100644 --- a/include/linux/huge_mm.h +++ b/include/linux/huge_mm.h @@ -92,11 +92,14 @@ extern bool is_vma_temporary_stack(struct vm_area_struct *vma); extern unsigned long transparent_hugepage_flags; +extern void prep_transhuge_page(struct page *page); + int split_huge_page_to_list(struct page *page, struct list_head *list); static inline int split_huge_page(struct page *page) { return split_huge_page_to_list(page, NULL); } +void deferred_split_huge_page(struct page *page); void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, unsigned long address); @@ -174,6 +177,7 @@ static inline int split_huge_page(struct page *page) { return 0; } +static inline void deferred_split_huge_page(struct page *page) {} #define split_huge_pmd(__vma, __pmd, __address) \ do { } while (0) static inline int hugepage_madvise(struct vm_area_struct *vma, diff --git a/include/linux/mm.h b/include/linux/mm.h index 16add6692f49..9c594fbb3f6d 100644 --- a/include/linux/mm.h +++ b/include/linux/mm.h @@ -522,6 +522,8 @@ static inline void set_compound_order(struct page *page, unsigned long order) page[1].compound_order = order; } +void free_compound_page(struct page *page); + #ifdef CONFIG_MMU /* * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when diff --git a/mm/huge_memory.c b/mm/huge_memory.c index 27045ea7f37e..bee9bf073543 100644 --- a/mm/huge_memory.c +++ b/mm/huge_memory.c @@ -71,6 +71,8 @@ static int khugepaged(void *none); static int khugepaged_slab_init(void); static void khugepaged_slab_exit(void); +static void free_transhuge_page(struct page *page); + #define MM_SLOTS_HASH_BITS 10 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); @@ -105,6 +107,10 @@ static struct khugepaged_scan khugepaged_scan = { .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), }; +static DEFINE_SPINLOCK(split_queue_lock); +static LIST_HEAD(split_queue); +static unsigned long split_queue_len; +static struct shrinker deferred_split_shrinker; static int set_recommended_min_free_kbytes(void) { @@ -643,6 +649,9 @@ static int __init hugepage_init(void) err = register_shrinker(&huge_zero_page_shrinker); if (err) goto err_hzp_shrinker; + err = register_shrinker(&deferred_split_shrinker); + if (err) + goto err_split_shrinker; /* * By default disable transparent hugepages on smaller systems, @@ -660,6 +669,8 @@ static int __init hugepage_init(void) return 0; err_khugepaged: + unregister_shrinker(&deferred_split_shrinker); +err_split_shrinker: unregister_shrinker(&huge_zero_page_shrinker); err_hzp_shrinker: khugepaged_slab_exit(); @@ -716,6 +727,19 @@ static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot) return entry; } +void prep_transhuge_page(struct page *page) +{ + /* we use page->lru in second tail page: assuming THP order >= 2 */ + BUILD_BUG_ON(HPAGE_PMD_ORDER < 2); + + /* + * ->lru in the first tail page is occupied by destructor + * and order of the compound page + */ + INIT_LIST_HEAD(&page[2].lru); + set_compound_page_dtor(page, free_transhuge_page); +} + static int __do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, @@ -868,6 +892,7 @@ int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, count_vm_event(THP_FAULT_FALLBACK); return VM_FAULT_FALLBACK; } + prep_transhuge_page(page); return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page, gfp, flags); } @@ -1120,7 +1145,9 @@ alloc: } else new_page = NULL; - if (unlikely(!new_page)) { + if (likely(new_page)) { + prep_transhuge_page(new_page); + } else { if (!page) { split_huge_pmd(vma, pmd, address); ret |= VM_FAULT_FALLBACK; @@ -2045,6 +2072,7 @@ khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm, return NULL; } + prep_transhuge_page(*hpage); count_vm_event(THP_COLLAPSE_ALLOC); return *hpage; } @@ -2056,8 +2084,12 @@ static int khugepaged_find_target_node(void) static inline struct page *alloc_hugepage(int defrag) { - return alloc_pages(alloc_hugepage_gfpmask(defrag, 0), - HPAGE_PMD_ORDER); + struct page *page; + + page = alloc_pages(alloc_hugepage_gfpmask(defrag, 0), HPAGE_PMD_ORDER); + if (page) + prep_transhuge_page(page); + return page; } static struct page *khugepaged_alloc_hugepage(bool *wait) @@ -2947,6 +2979,13 @@ static void __split_huge_page(struct page *page, struct list_head *list) spin_lock_irq(&zone->lru_lock); lruvec = mem_cgroup_page_lruvec(head, zone); + spin_lock(&split_queue_lock); + if (!list_empty(&head[2].lru)) { + split_queue_len--; + list_del(&head[2].lru); + } + spin_unlock(&split_queue_lock); + /* complete memcg works before add pages to LRU */ mem_cgroup_split_huge_fixup(head); @@ -3058,3 +3097,85 @@ out: count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); return ret; } + +static void free_transhuge_page(struct page *page) +{ + unsigned long flags; + + spin_lock_irqsave(&split_queue_lock, flags); + if (!list_empty(&page[2].lru)) { + split_queue_len--; + list_del(&page[2].lru); + } + spin_unlock_irqrestore(&split_queue_lock, flags); + free_compound_page(page); +} + +void deferred_split_huge_page(struct page *page) +{ + unsigned long flags; + + VM_BUG_ON_PAGE(!PageTransHuge(page), page); + + spin_lock_irqsave(&split_queue_lock, flags); + if (list_empty(&page[2].lru)) { + list_add_tail(&page[2].lru, &split_queue); + split_queue_len++; + } + spin_unlock_irqrestore(&split_queue_lock, flags); +} + +static unsigned long deferred_split_count(struct shrinker *shrink, + struct shrink_control *sc) +{ + /* + * Split a page from split_queue will free up at least one page, + * at most HPAGE_PMD_NR - 1. We don't track exact number. + * Let's use HPAGE_PMD_NR / 2 as ballpark. + */ + return ACCESS_ONCE(split_queue_len) * HPAGE_PMD_NR / 2; +} + +static unsigned long deferred_split_scan(struct shrinker *shrink, + struct shrink_control *sc) +{ + unsigned long flags; + LIST_HEAD(list); + struct page *page, *next; + int split = 0; + + spin_lock_irqsave(&split_queue_lock, flags); + list_splice_init(&split_queue, &list); + + /* Take pin on all head pages to avoid freeing them under us */ + list_for_each_entry_safe(page, next, &list, lru) { + page = compound_head(page); + /* race with put_compound_page() */ + if (!get_page_unless_zero(page)) { + list_del_init(&page[2].lru); + split_queue_len--; + } + } + spin_unlock_irqrestore(&split_queue_lock, flags); + + list_for_each_entry_safe(page, next, &list, lru) { + lock_page(page); + /* split_huge_page() removes page from list on success */ + if (!split_huge_page(page)) + split++; + unlock_page(page); + put_page(page); + } + + spin_lock_irqsave(&split_queue_lock, flags); + list_splice_tail(&list, &split_queue); + spin_unlock_irqrestore(&split_queue_lock, flags); + + return split * HPAGE_PMD_NR / 2; +} + +static struct shrinker deferred_split_shrinker = { + .count_objects = deferred_split_count, + .scan_objects = deferred_split_scan, + .seeks = DEFAULT_SEEKS, +}; diff --git a/mm/migrate.c b/mm/migrate.c index 8bb2107b8751..4c79c5447623 100644 --- a/mm/migrate.c +++ b/mm/migrate.c @@ -1742,6 +1742,7 @@ int migrate_misplaced_transhuge_page(struct mm_struct *mm, HPAGE_PMD_ORDER); if (!new_page) goto out_fail; + prep_transhuge_page(new_page); isolated = numamigrate_isolate_page(pgdat, page); if (!isolated) { diff --git a/mm/page_alloc.c b/mm/page_alloc.c index 6e3b42763894..f46b6ef06748 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c @@ -430,7 +430,7 @@ out: * This usage means that zero-order pages may not be compound. */ -static void free_compound_page(struct page *page) +void free_compound_page(struct page *page) { __free_pages_ok(page, compound_order(page)); } diff --git a/mm/rmap.c b/mm/rmap.c index 7a374d1ddcd3..c9939ac3d5a1 100644 --- a/mm/rmap.c +++ b/mm/rmap.c @@ -1204,8 +1204,10 @@ static void page_remove_anon_compound_rmap(struct page *page) nr = HPAGE_PMD_NR; } - if (nr) + if (nr) { __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, nr); + deferred_split_huge_page(page); + } } /** @@ -1240,6 +1242,9 @@ void page_remove_rmap(struct page *page, bool compound) if (unlikely(PageMlocked(page))) clear_page_mlock(page); + if (PageTransCompound(page)) + deferred_split_huge_page(compound_head(page)); + /* * It would be tidy to reset the PageAnon mapping here, * but that might overwrite a racing page_add_anon_rmap -- 2.1.4 -- To unsubscribe, send a message with 'unsubscribe linux-mm' in the body to majordomo@xxxxxxxxx. For more info on Linux MM, see: http://www.linux-mm.org/ . Don't email: <a href=mailto:"dont@xxxxxxxxx"> email@xxxxxxxxx </a>