[PATCHv5 26/28] thp: introduce deferred_split_huge_page()

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



Currently we don't split huge page on partial unmap. It's not an ideal
situation. It can lead to memory overhead.

Furtunately, we can detect partial unmap on page_remove_rmap(). But we
cannot call split_huge_page() from there due to locking context.

It's also counterproductive to do directly from munmap() codepath: in
many cases we will hit this from exit(2) and splitting the huge page
just to free it up in small pages is not what we really want.

The patch introduce deferred_split_huge_page() which put the huge page
into queue for splitting. The splitting itself will happen when we get
memory pressure via shrinker interface. The page will be dropped from
list on freeing through compound page destructor.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@xxxxxxxxxxxxxxx>
Tested-by: Sasha Levin <sasha.levin@xxxxxxxxxx>
---
 include/linux/huge_mm.h |   4 ++
 include/linux/mm.h      |   2 +
 mm/huge_memory.c        | 126 ++++++++++++++++++++++++++++++++++++++++++++++--
 mm/migrate.c            |   1 +
 mm/page_alloc.c         |   2 +-
 mm/rmap.c               |   3 ++
 6 files changed, 133 insertions(+), 5 deletions(-)

diff --git a/include/linux/huge_mm.h b/include/linux/huge_mm.h
index 3c0a50ed3eb8..8bf0f8d1c796 100644
--- a/include/linux/huge_mm.h
+++ b/include/linux/huge_mm.h
@@ -92,11 +92,14 @@ extern bool is_vma_temporary_stack(struct vm_area_struct *vma);
 
 extern unsigned long transparent_hugepage_flags;
 
+extern void prep_transhuge_page(struct page *page);
+
 int split_huge_page_to_list(struct page *page, struct list_head *list);
 static inline int split_huge_page(struct page *page)
 {
 	return split_huge_page_to_list(page, NULL);
 }
+void deferred_split_huge_page(struct page *page);
 
 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
 		unsigned long address);
@@ -174,6 +177,7 @@ static inline int split_huge_page(struct page *page)
 {
 	return 0;
 }
+static inline void deferred_split_huge_page(struct page *page) {}
 #define split_huge_pmd(__vma, __pmd, __address)	\
 	do { } while (0)
 static inline int hugepage_madvise(struct vm_area_struct *vma,
diff --git a/include/linux/mm.h b/include/linux/mm.h
index 8ddc184c55d6..331b15b02514 100644
--- a/include/linux/mm.h
+++ b/include/linux/mm.h
@@ -511,6 +511,8 @@ static inline void set_compound_order(struct page *page, unsigned long order)
 	page[1].compound_order = order;
 }
 
+void free_compound_page(struct page *page);
+
 #ifdef CONFIG_MMU
 /*
  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
diff --git a/mm/huge_memory.c b/mm/huge_memory.c
index 7ad338ab2ac8..cce4604c192f 100644
--- a/mm/huge_memory.c
+++ b/mm/huge_memory.c
@@ -70,6 +70,8 @@ static int khugepaged(void *none);
 static int khugepaged_slab_init(void);
 static void khugepaged_slab_exit(void);
 
+static void free_transhuge_page(struct page *page);
+
 #define MM_SLOTS_HASH_BITS 10
 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
 
@@ -104,6 +106,10 @@ static struct khugepaged_scan khugepaged_scan = {
 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
 };
 
+static DEFINE_SPINLOCK(split_queue_lock);
+static LIST_HEAD(split_queue);
+static unsigned long split_queue_len;
+static struct shrinker deferred_split_shrinker;
 
 static int set_recommended_min_free_kbytes(void)
 {
@@ -642,6 +648,9 @@ static int __init hugepage_init(void)
 	err = register_shrinker(&huge_zero_page_shrinker);
 	if (err)
 		goto err_hzp_shrinker;
+	err = register_shrinker(&deferred_split_shrinker);
+	if (err)
+		goto err_split_shrinker;
 
 	/*
 	 * By default disable transparent hugepages on smaller systems,
@@ -659,6 +668,8 @@ static int __init hugepage_init(void)
 
 	return 0;
 err_khugepaged:
+	unregister_shrinker(&deferred_split_shrinker);
+err_split_shrinker:
 	unregister_shrinker(&huge_zero_page_shrinker);
 err_hzp_shrinker:
 	khugepaged_slab_exit();
@@ -715,6 +726,12 @@ static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
 	return entry;
 }
 
+void prep_transhuge_page(struct page *page)
+{
+	INIT_LIST_HEAD(&page[2].lru);
+	set_compound_page_dtor(page, free_transhuge_page);
+}
+
 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
 					struct vm_area_struct *vma,
 					unsigned long haddr, pmd_t *pmd,
@@ -834,7 +851,9 @@ int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
 		count_vm_event(THP_FAULT_FALLBACK);
 		return VM_FAULT_FALLBACK;
 	}
-	if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page, gfp))) {
+	prep_transhuge_page(page);
+	if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr,
+					pmd, page, gfp))) {
 		put_page(page);
 		count_vm_event(THP_FAULT_FALLBACK);
 		return VM_FAULT_FALLBACK;
@@ -1095,7 +1114,9 @@ alloc:
 	} else
 		new_page = NULL;
 
-	if (unlikely(!new_page)) {
+	if (likely(new_page)) {
+		prep_transhuge_page(new_page);
+	} else {
 		if (!page) {
 			split_huge_pmd(vma, pmd, address);
 			ret |= VM_FAULT_FALLBACK;
@@ -2019,6 +2040,7 @@ khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
 		return NULL;
 	}
 
+	prep_transhuge_page(*hpage);
 	count_vm_event(THP_COLLAPSE_ALLOC);
 	return *hpage;
 }
@@ -2030,8 +2052,12 @@ static int khugepaged_find_target_node(void)
 
 static inline struct page *alloc_hugepage(int defrag)
 {
-	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
-			   HPAGE_PMD_ORDER);
+	struct page *page;
+
+	page = alloc_pages(alloc_hugepage_gfpmask(defrag, 0), HPAGE_PMD_ORDER);
+	if (page)
+		prep_transhuge_page(page);
+	return page;
 }
 
 static struct page *khugepaged_alloc_hugepage(bool *wait)
@@ -2916,6 +2942,13 @@ static void __split_huge_page(struct page *page, struct list_head *list)
 	spin_lock_irq(&zone->lru_lock);
 	lruvec = mem_cgroup_page_lruvec(head, zone);
 
+	spin_lock(&split_queue_lock);
+	if (!list_empty(&head[2].lru)) {
+		split_queue_len--;
+		list_del(&head[2].lru);
+	}
+	spin_unlock(&split_queue_lock);
+
 	/* complete memcg works before add pages to LRU */
 	mem_cgroup_split_huge_fixup(head);
 
@@ -3026,3 +3059,88 @@ out:
 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
 	return ret;
 }
+
+static void free_transhuge_page(struct page *page)
+{
+	unsigned long flags;
+
+	spin_lock_irqsave(&split_queue_lock, flags);
+	if (!list_empty(&page[2].lru)) {
+		split_queue_len--;
+		list_del(&page[2].lru);
+	}
+	spin_unlock_irqrestore(&split_queue_lock, flags);
+	free_compound_page(page);
+}
+
+void deferred_split_huge_page(struct page *page)
+{
+	unsigned long flags;
+
+	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
+
+	/* we use page->lru in second tail page: assuming THP order >= 2 */
+	BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
+
+	spin_lock_irqsave(&split_queue_lock, flags);
+	if (list_empty(&page[2].lru)) {
+		list_add_tail(&page[2].lru, &split_queue);
+		split_queue_len++;
+	}
+	spin_unlock_irqrestore(&split_queue_lock, flags);
+}
+
+static unsigned long deferred_split_count(struct shrinker *shrink,
+		struct shrink_control *sc)
+{
+	/*
+	 * Split a page from split_queue will free up at least one page,
+	 * at most HPAGE_PMD_NR - 1. We don't track exact number.
+	 * Let's use HPAGE_PMD_NR / 2 as ballpark.
+	 */
+	return ACCESS_ONCE(split_queue_len) * HPAGE_PMD_NR / 2;
+}
+
+static unsigned long deferred_split_scan(struct shrinker *shrink,
+		struct shrink_control *sc)
+{
+	unsigned long flags;
+	LIST_HEAD(list);
+	struct page *page, *next;
+	int split = 0;
+
+	spin_lock_irqsave(&split_queue_lock, flags);
+	list_splice_init(&split_queue, &list);
+
+	/* Take pin on all head pages to avoid freeing them under us */
+	list_for_each_entry_safe(page, next, &list, lru) {
+		page = compound_head(page);
+		/* race with put_compound_page() */
+		if (!get_page_unless_zero(page)) {
+			list_del_init(&page[2].lru);
+			split_queue_len--;
+		}
+	}
+	spin_unlock_irqrestore(&split_queue_lock, flags);
+
+	list_for_each_entry_safe(page, next, &list, lru) {
+		lock_page(page);
+		/* split_huge_page() removes page from list on success */
+		if (!split_huge_page(page))
+			split++;
+		unlock_page(page);
+		put_page(page);
+	}
+
+	spin_lock_irqsave(&split_queue_lock, flags);
+	list_splice_tail(&list, &split_queue);
+	spin_unlock_irqrestore(&split_queue_lock, flags);
+
+	return split * HPAGE_PMD_NR / 2;
+}
+
+static struct shrinker deferred_split_shrinker = {
+	.count_objects = deferred_split_count,
+	.scan_objects = deferred_split_scan,
+	.seeks = DEFAULT_SEEKS,
+};
diff --git a/mm/migrate.c b/mm/migrate.c
index 03b9c4ba56dc..ef3472397ced 100644
--- a/mm/migrate.c
+++ b/mm/migrate.c
@@ -1739,6 +1739,7 @@ int migrate_misplaced_transhuge_page(struct mm_struct *mm,
 		HPAGE_PMD_ORDER);
 	if (!new_page)
 		goto out_fail;
+	prep_transhuge_page(new_page);
 
 	isolated = numamigrate_isolate_page(pgdat, page);
 	if (!isolated) {
diff --git a/mm/page_alloc.c b/mm/page_alloc.c
index ac331be78308..f3ffce74d9dc 100644
--- a/mm/page_alloc.c
+++ b/mm/page_alloc.c
@@ -356,7 +356,7 @@ out:
  * This usage means that zero-order pages may not be compound.
  */
 
-static void free_compound_page(struct page *page)
+void free_compound_page(struct page *page)
 {
 	__free_pages_ok(page, compound_order(page));
 }
diff --git a/mm/rmap.c b/mm/rmap.c
index 723af5bbeb02..55a0108bec99 100644
--- a/mm/rmap.c
+++ b/mm/rmap.c
@@ -1227,6 +1227,9 @@ void page_remove_rmap(struct page *page, bool compound)
 	if (unlikely(PageMlocked(page)))
 		clear_page_mlock(page);
 
+	if (PageTransCompound(page))
+		deferred_split_huge_page(compound_head(page));
+
 	/*
 	 * It would be tidy to reset the PageAnon mapping here,
 	 * but that might overwrite a racing page_add_anon_rmap
-- 
2.1.4

--
To unsubscribe, send a message with 'unsubscribe linux-mm' in
the body to majordomo@xxxxxxxxx.  For more info on Linux MM,
see: http://www.linux-mm.org/ .
Don't email: <a href=mailto:"dont@xxxxxxxxx";> email@xxxxxxxxx </a>




[Index of Archives]     [Linux ARM Kernel]     [Linux ARM]     [Linux Omap]     [Fedora ARM]     [IETF Annouce]     [Bugtraq]     [Linux]     [Linux OMAP]     [Linux MIPS]     [ECOS]     [Asterisk Internet PBX]     [Linux API]