This patch promotes the slab-based zsmalloc memory allocator from the staging tree to lib/ zcache/zram depends on this allocator for storing compressed RAM pages in an efficient way under system wide memory pressure where high-order (greater than 0) page allocation are very likely to fail. For more information on zsmalloc and its internals, read the documentation at the top of the zsmalloc.c file. Acked-by: Pekka Enberg <penberg@xxxxxxxxxx> Signed-off-by: Minchan Kim <minchan@xxxxxxxxxx> --- drivers/staging/Kconfig | 2 - drivers/staging/Makefile | 1 - drivers/staging/zcache/zcache-main.c | 4 +- drivers/staging/zram/zram_drv.h | 3 +- drivers/staging/zsmalloc/Kconfig | 10 - drivers/staging/zsmalloc/Makefile | 3 - drivers/staging/zsmalloc/zsmalloc-main.c | 1064 ------------------------------ drivers/staging/zsmalloc/zsmalloc.h | 43 -- include/linux/zsmalloc.h | 43 ++ lib/Kconfig | 18 + lib/Makefile | 1 + lib/zsmalloc.c | 1064 ++++++++++++++++++++++++++++++ 12 files changed, 1129 insertions(+), 1127 deletions(-) delete mode 100644 drivers/staging/zsmalloc/Kconfig delete mode 100644 drivers/staging/zsmalloc/Makefile delete mode 100644 drivers/staging/zsmalloc/zsmalloc-main.c delete mode 100644 drivers/staging/zsmalloc/zsmalloc.h create mode 100644 include/linux/zsmalloc.h create mode 100644 lib/zsmalloc.c diff --git a/drivers/staging/Kconfig b/drivers/staging/Kconfig index 12a6f2e..a26d09a 100644 --- a/drivers/staging/Kconfig +++ b/drivers/staging/Kconfig @@ -76,8 +76,6 @@ source "drivers/staging/zram/Kconfig" source "drivers/staging/zcache/Kconfig" -source "drivers/staging/zsmalloc/Kconfig" - source "drivers/staging/wlags49_h2/Kconfig" source "drivers/staging/wlags49_h25/Kconfig" diff --git a/drivers/staging/Makefile b/drivers/staging/Makefile index 6d16f82..f53676a 100644 --- a/drivers/staging/Makefile +++ b/drivers/staging/Makefile @@ -33,7 +33,6 @@ obj-$(CONFIG_DX_SEP) += sep/ obj-$(CONFIG_IIO) += iio/ obj-$(CONFIG_ZRAM) += zram/ obj-$(CONFIG_ZCACHE) += zcache/ -obj-$(CONFIG_ZSMALLOC) += zsmalloc/ obj-$(CONFIG_WLAGS49_H2) += wlags49_h2/ obj-$(CONFIG_WLAGS49_H25) += wlags49_h25/ obj-$(CONFIG_FB_SM7XX) += sm7xxfb/ diff --git a/drivers/staging/zcache/zcache-main.c b/drivers/staging/zcache/zcache-main.c index 52b43b7..34b2c5c 100644 --- a/drivers/staging/zcache/zcache-main.c +++ b/drivers/staging/zcache/zcache-main.c @@ -32,9 +32,9 @@ #include <linux/crypto.h> #include <linux/string.h> #include <linux/idr.h> -#include "tmem.h" +#include <linux/zsmalloc.h> -#include "../zsmalloc/zsmalloc.h" +#include "tmem.h" #ifdef CONFIG_CLEANCACHE #include <linux/cleancache.h> diff --git a/drivers/staging/zram/zram_drv.h b/drivers/staging/zram/zram_drv.h index df2eec4..1e72965 100644 --- a/drivers/staging/zram/zram_drv.h +++ b/drivers/staging/zram/zram_drv.h @@ -17,8 +17,7 @@ #include <linux/spinlock.h> #include <linux/mutex.h> - -#include "../zsmalloc/zsmalloc.h" +#include <linux/zsmalloc.h> /* * Some arbitrary value. This is just to catch diff --git a/drivers/staging/zsmalloc/Kconfig b/drivers/staging/zsmalloc/Kconfig deleted file mode 100644 index 9084565..0000000 --- a/drivers/staging/zsmalloc/Kconfig +++ /dev/null @@ -1,10 +0,0 @@ -config ZSMALLOC - tristate "Memory allocator for compressed pages" - default n - help - zsmalloc is a slab-based memory allocator designed to store - compressed RAM pages. zsmalloc uses virtual memory mapping - in order to reduce fragmentation. However, this results in a - non-standard allocator interface where a handle, not a pointer, is - returned by an alloc(). This handle must be mapped in order to - access the allocated space. diff --git a/drivers/staging/zsmalloc/Makefile b/drivers/staging/zsmalloc/Makefile deleted file mode 100644 index b134848..0000000 --- a/drivers/staging/zsmalloc/Makefile +++ /dev/null @@ -1,3 +0,0 @@ -zsmalloc-y := zsmalloc-main.o - -obj-$(CONFIG_ZSMALLOC) += zsmalloc.o diff --git a/drivers/staging/zsmalloc/zsmalloc-main.c b/drivers/staging/zsmalloc/zsmalloc-main.c deleted file mode 100644 index 09a9d35..0000000 --- a/drivers/staging/zsmalloc/zsmalloc-main.c +++ /dev/null @@ -1,1064 +0,0 @@ -/* - * zsmalloc memory allocator - * - * Copyright (C) 2011 Nitin Gupta - * - * This code is released using a dual license strategy: BSD/GPL - * You can choose the license that better fits your requirements. - * - * Released under the terms of 3-clause BSD License - * Released under the terms of GNU General Public License Version 2.0 - */ - - -/* - * This allocator is designed for use with zcache and zram. Thus, the - * allocator is supposed to work well under low memory conditions. In - * particular, it never attempts higher order page allocation which is - * very likely to fail under memory pressure. On the other hand, if we - * just use single (0-order) pages, it would suffer from very high - * fragmentation -- any object of size PAGE_SIZE/2 or larger would occupy - * an entire page. This was one of the major issues with its predecessor - * (xvmalloc). - * - * To overcome these issues, zsmalloc allocates a bunch of 0-order pages - * and links them together using various 'struct page' fields. These linked - * pages act as a single higher-order page i.e. an object can span 0-order - * page boundaries. The code refers to these linked pages as a single entity - * called zspage. - * - * Following is how we use various fields and flags of underlying - * struct page(s) to form a zspage. - * - * Usage of struct page fields: - * page->first_page: points to the first component (0-order) page - * page->index (union with page->freelist): offset of the first object - * starting in this page. For the first page, this is - * always 0, so we use this field (aka freelist) to point - * to the first free object in zspage. - * page->lru: links together all component pages (except the first page) - * of a zspage - * - * For _first_ page only: - * - * page->private (union with page->first_page): refers to the - * component page after the first page - * page->freelist: points to the first free object in zspage. - * Free objects are linked together using in-place - * metadata. - * page->objects: maximum number of objects we can store in this - * zspage (class->zspage_order * PAGE_SIZE / class->size) - * page->lru: links together first pages of various zspages. - * Basically forming list of zspages in a fullness group. - * page->mapping: class index and fullness group of the zspage - * - * Usage of struct page flags: - * PG_private: identifies the first component page - * PG_private2: identifies the last component page - * - */ - -#ifdef CONFIG_ZSMALLOC_DEBUG -#define DEBUG -#endif - -#include <linux/module.h> -#include <linux/kernel.h> -#include <linux/bitops.h> -#include <linux/errno.h> -#include <linux/highmem.h> -#include <linux/init.h> -#include <linux/string.h> -#include <linux/slab.h> -#include <asm/tlbflush.h> -#include <asm/pgtable.h> -#include <linux/cpumask.h> -#include <linux/cpu.h> -#include <linux/vmalloc.h> -#include <linux/hardirq.h> -#include <linux/spinlock.h> -#include <linux/types.h> - -#include "zsmalloc.h" - -/* - * This must be power of 2 and greater than of equal to sizeof(link_free). - * These two conditions ensure that any 'struct link_free' itself doesn't - * span more than 1 page which avoids complex case of mapping 2 pages simply - * to restore link_free pointer values. - */ -#define ZS_ALIGN 8 - -/* - * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) - * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. - */ -#define ZS_MAX_ZSPAGE_ORDER 2 -#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) - -/* - * Object location (<PFN>, <obj_idx>) is encoded as - * as single (void *) handle value. - * - * Note that object index <obj_idx> is relative to system - * page <PFN> it is stored in, so for each sub-page belonging - * to a zspage, obj_idx starts with 0. - * - * This is made more complicated by various memory models and PAE. - */ - -#ifndef MAX_PHYSMEM_BITS -#ifdef CONFIG_HIGHMEM64G -#define MAX_PHYSMEM_BITS 36 -#else /* !CONFIG_HIGHMEM64G */ -/* - * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just - * be PAGE_SHIFT - */ -#define MAX_PHYSMEM_BITS BITS_PER_LONG -#endif -#endif -#define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT) -#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS) -#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) - -#define MAX(a, b) ((a) >= (b) ? (a) : (b)) -/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ -#define ZS_MIN_ALLOC_SIZE \ - MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) -#define ZS_MAX_ALLOC_SIZE PAGE_SIZE - -/* - * On systems with 4K page size, this gives 254 size classes! There is a - * trader-off here: - * - Large number of size classes is potentially wasteful as free page are - * spread across these classes - * - Small number of size classes causes large internal fragmentation - * - Probably its better to use specific size classes (empirically - * determined). NOTE: all those class sizes must be set as multiple of - * ZS_ALIGN to make sure link_free itself never has to span 2 pages. - * - * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN - * (reason above) - */ -#define ZS_SIZE_CLASS_DELTA 16 -#define ZS_SIZE_CLASSES ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / \ - ZS_SIZE_CLASS_DELTA + 1) - -/* - * We do not maintain any list for completely empty or full pages - */ -enum fullness_group { - ZS_ALMOST_FULL, - ZS_ALMOST_EMPTY, - _ZS_NR_FULLNESS_GROUPS, - - ZS_EMPTY, - ZS_FULL -}; - -/* - * We assign a page to ZS_ALMOST_EMPTY fullness group when: - * n <= N / f, where - * n = number of allocated objects - * N = total number of objects zspage can store - * f = 1/fullness_threshold_frac - * - * Similarly, we assign zspage to: - * ZS_ALMOST_FULL when n > N / f - * ZS_EMPTY when n == 0 - * ZS_FULL when n == N - * - * (see: fix_fullness_group()) - */ -static const int fullness_threshold_frac = 4; - -struct size_class { - /* - * Size of objects stored in this class. Must be multiple - * of ZS_ALIGN. - */ - int size; - unsigned int index; - - /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ - int pages_per_zspage; - - spinlock_t lock; - - /* stats */ - u64 pages_allocated; - - struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS]; -}; - -/* - * Placed within free objects to form a singly linked list. - * For every zspage, first_page->freelist gives head of this list. - * - * This must be power of 2 and less than or equal to ZS_ALIGN - */ -struct link_free { - /* Handle of next free chunk (encodes <PFN, obj_idx>) */ - void *next; -}; - -struct zs_pool { - struct size_class size_class[ZS_SIZE_CLASSES]; - - gfp_t flags; /* allocation flags used when growing pool */ - const char *name; -}; - -/* - * A zspage's class index and fullness group - * are encoded in its (first)page->mapping - */ -#define CLASS_IDX_BITS 28 -#define FULLNESS_BITS 4 -#define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1) -#define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1) - -/* - * By default, zsmalloc uses a copy-based object mapping method to access - * allocations that span two pages. However, if a particular architecture - * 1) Implements local_flush_tlb_kernel_range() and 2) Performs VM mapping - * faster than copying, then it should be added here so that - * USE_PGTABLE_MAPPING is defined. This causes zsmalloc to use page table - * mapping rather than copying - * for object mapping. -*/ -#if defined(CONFIG_ARM) -#define USE_PGTABLE_MAPPING -#endif - -struct mapping_area { -#ifdef USE_PGTABLE_MAPPING - struct vm_struct *vm; /* vm area for mapping object that span pages */ -#else - char *vm_buf; /* copy buffer for objects that span pages */ -#endif - char *vm_addr; /* address of kmap_atomic()'ed pages */ - enum zs_mapmode vm_mm; /* mapping mode */ -}; - - -/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ -static DEFINE_PER_CPU(struct mapping_area, zs_map_area); - -static int is_first_page(struct page *page) -{ - return PagePrivate(page); -} - -static int is_last_page(struct page *page) -{ - return PagePrivate2(page); -} - -static void get_zspage_mapping(struct page *page, unsigned int *class_idx, - enum fullness_group *fullness) -{ - unsigned long m; - BUG_ON(!is_first_page(page)); - - m = (unsigned long)page->mapping; - *fullness = m & FULLNESS_MASK; - *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK; -} - -static void set_zspage_mapping(struct page *page, unsigned int class_idx, - enum fullness_group fullness) -{ - unsigned long m; - BUG_ON(!is_first_page(page)); - - m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) | - (fullness & FULLNESS_MASK); - page->mapping = (struct address_space *)m; -} - -static int get_size_class_index(int size) -{ - int idx = 0; - - if (likely(size > ZS_MIN_ALLOC_SIZE)) - idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, - ZS_SIZE_CLASS_DELTA); - - return idx; -} - -static enum fullness_group get_fullness_group(struct page *page) -{ - int inuse, max_objects; - enum fullness_group fg; - BUG_ON(!is_first_page(page)); - - inuse = page->inuse; - max_objects = page->objects; - - if (inuse == 0) - fg = ZS_EMPTY; - else if (inuse == max_objects) - fg = ZS_FULL; - else if (inuse <= max_objects / fullness_threshold_frac) - fg = ZS_ALMOST_EMPTY; - else - fg = ZS_ALMOST_FULL; - - return fg; -} - -static void insert_zspage(struct page *page, struct size_class *class, - enum fullness_group fullness) -{ - struct page **head; - - BUG_ON(!is_first_page(page)); - - if (fullness >= _ZS_NR_FULLNESS_GROUPS) - return; - - head = &class->fullness_list[fullness]; - if (*head) - list_add_tail(&page->lru, &(*head)->lru); - - *head = page; -} - -static void remove_zspage(struct page *page, struct size_class *class, - enum fullness_group fullness) -{ - struct page **head; - - BUG_ON(!is_first_page(page)); - - if (fullness >= _ZS_NR_FULLNESS_GROUPS) - return; - - head = &class->fullness_list[fullness]; - BUG_ON(!*head); - if (list_empty(&(*head)->lru)) - *head = NULL; - else if (*head == page) - *head = (struct page *)list_entry((*head)->lru.next, - struct page, lru); - - list_del_init(&page->lru); -} - -static enum fullness_group fix_fullness_group(struct zs_pool *pool, - struct page *page) -{ - int class_idx; - struct size_class *class; - enum fullness_group currfg, newfg; - - BUG_ON(!is_first_page(page)); - - get_zspage_mapping(page, &class_idx, &currfg); - newfg = get_fullness_group(page); - if (newfg == currfg) - goto out; - - class = &pool->size_class[class_idx]; - remove_zspage(page, class, currfg); - insert_zspage(page, class, newfg); - set_zspage_mapping(page, class_idx, newfg); - -out: - return newfg; -} - -/* - * We have to decide on how many pages to link together - * to form a zspage for each size class. This is important - * to reduce wastage due to unusable space left at end of - * each zspage which is given as: - * wastage = Zp - Zp % size_class - * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... - * - * For example, for size class of 3/8 * PAGE_SIZE, we should - * link together 3 PAGE_SIZE sized pages to form a zspage - * since then we can perfectly fit in 8 such objects. - */ -static int get_pages_per_zspage(int class_size) -{ - int i, max_usedpc = 0; - /* zspage order which gives maximum used size per KB */ - int max_usedpc_order = 1; - - for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { - int zspage_size; - int waste, usedpc; - - zspage_size = i * PAGE_SIZE; - waste = zspage_size % class_size; - usedpc = (zspage_size - waste) * 100 / zspage_size; - - if (usedpc > max_usedpc) { - max_usedpc = usedpc; - max_usedpc_order = i; - } - } - - return max_usedpc_order; -} - -/* - * A single 'zspage' is composed of many system pages which are - * linked together using fields in struct page. This function finds - * the first/head page, given any component page of a zspage. - */ -static struct page *get_first_page(struct page *page) -{ - if (is_first_page(page)) - return page; - else - return page->first_page; -} - -static struct page *get_next_page(struct page *page) -{ - struct page *next; - - if (is_last_page(page)) - next = NULL; - else if (is_first_page(page)) - next = (struct page *)page->private; - else - next = list_entry(page->lru.next, struct page, lru); - - return next; -} - -/* Encode <page, obj_idx> as a single handle value */ -static void *obj_location_to_handle(struct page *page, unsigned long obj_idx) -{ - unsigned long handle; - - if (!page) { - BUG_ON(obj_idx); - return NULL; - } - - handle = page_to_pfn(page) << OBJ_INDEX_BITS; - handle |= (obj_idx & OBJ_INDEX_MASK); - - return (void *)handle; -} - -/* Decode <page, obj_idx> pair from the given object handle */ -static void obj_handle_to_location(unsigned long handle, struct page **page, - unsigned long *obj_idx) -{ - *page = pfn_to_page(handle >> OBJ_INDEX_BITS); - *obj_idx = handle & OBJ_INDEX_MASK; -} - -static unsigned long obj_idx_to_offset(struct page *page, - unsigned long obj_idx, int class_size) -{ - unsigned long off = 0; - - if (!is_first_page(page)) - off = page->index; - - return off + obj_idx * class_size; -} - -static void reset_page(struct page *page) -{ - clear_bit(PG_private, &page->flags); - clear_bit(PG_private_2, &page->flags); - set_page_private(page, 0); - page->mapping = NULL; - page->freelist = NULL; - reset_page_mapcount(page); -} - -static void free_zspage(struct page *first_page) -{ - struct page *nextp, *tmp, *head_extra; - - BUG_ON(!is_first_page(first_page)); - BUG_ON(first_page->inuse); - - head_extra = (struct page *)page_private(first_page); - - reset_page(first_page); - __free_page(first_page); - - /* zspage with only 1 system page */ - if (!head_extra) - return; - - list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) { - list_del(&nextp->lru); - reset_page(nextp); - __free_page(nextp); - } - reset_page(head_extra); - __free_page(head_extra); -} - -/* Initialize a newly allocated zspage */ -static void init_zspage(struct page *first_page, struct size_class *class) -{ - unsigned long off = 0; - struct page *page = first_page; - - BUG_ON(!is_first_page(first_page)); - while (page) { - struct page *next_page; - struct link_free *link; - unsigned int i, objs_on_page; - - /* - * page->index stores offset of first object starting - * in the page. For the first page, this is always 0, - * so we use first_page->index (aka ->freelist) to store - * head of corresponding zspage's freelist. - */ - if (page != first_page) - page->index = off; - - link = (struct link_free *)kmap_atomic(page) + - off / sizeof(*link); - objs_on_page = (PAGE_SIZE - off) / class->size; - - for (i = 1; i <= objs_on_page; i++) { - off += class->size; - if (off < PAGE_SIZE) { - link->next = obj_location_to_handle(page, i); - link += class->size / sizeof(*link); - } - } - - /* - * We now come to the last (full or partial) object on this - * page, which must point to the first object on the next - * page (if present) - */ - next_page = get_next_page(page); - link->next = obj_location_to_handle(next_page, 0); - kunmap_atomic(link); - page = next_page; - off = (off + class->size) % PAGE_SIZE; - } -} - -/* - * Allocate a zspage for the given size class - */ -static struct page *alloc_zspage(struct size_class *class, gfp_t flags) -{ - int i, error; - struct page *first_page = NULL, *uninitialized_var(prev_page); - - /* - * Allocate individual pages and link them together as: - * 1. first page->private = first sub-page - * 2. all sub-pages are linked together using page->lru - * 3. each sub-page is linked to the first page using page->first_page - * - * For each size class, First/Head pages are linked together using - * page->lru. Also, we set PG_private to identify the first page - * (i.e. no other sub-page has this flag set) and PG_private_2 to - * identify the last page. - */ - error = -ENOMEM; - for (i = 0; i < class->pages_per_zspage; i++) { - struct page *page; - - page = alloc_page(flags); - if (!page) - goto cleanup; - - INIT_LIST_HEAD(&page->lru); - if (i == 0) { /* first page */ - SetPagePrivate(page); - set_page_private(page, 0); - first_page = page; - first_page->inuse = 0; - } - if (i == 1) - first_page->private = (unsigned long)page; - if (i >= 1) - page->first_page = first_page; - if (i >= 2) - list_add(&page->lru, &prev_page->lru); - if (i == class->pages_per_zspage - 1) /* last page */ - SetPagePrivate2(page); - prev_page = page; - } - - init_zspage(first_page, class); - - first_page->freelist = obj_location_to_handle(first_page, 0); - /* Maximum number of objects we can store in this zspage */ - first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size; - - error = 0; /* Success */ - -cleanup: - if (unlikely(error) && first_page) { - free_zspage(first_page); - first_page = NULL; - } - - return first_page; -} - -static struct page *find_get_zspage(struct size_class *class) -{ - int i; - struct page *page; - - for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) { - page = class->fullness_list[i]; - if (page) - break; - } - - return page; -} - -#ifdef USE_PGTABLE_MAPPING -static inline int __zs_cpu_up(struct mapping_area *area) -{ - /* - * Make sure we don't leak memory if a cpu UP notification - * and zs_init() race and both call zs_cpu_up() on the same cpu - */ - if (area->vm) - return 0; - area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL); - if (!area->vm) - return -ENOMEM; - return 0; -} - -static inline void __zs_cpu_down(struct mapping_area *area) -{ - if (area->vm) - free_vm_area(area->vm); - area->vm = NULL; -} - -static inline void *__zs_map_object(struct mapping_area *area, - struct page *pages[2], int off, int size) -{ - BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, &pages)); - area->vm_addr = area->vm->addr; - return area->vm_addr + off; -} - -static inline void __zs_unmap_object(struct mapping_area *area, - struct page *pages[2], int off, int size) -{ - unsigned long addr = (unsigned long)area->vm_addr; - unsigned long end = addr + (PAGE_SIZE * 2); - - flush_cache_vunmap(addr, end); - unmap_kernel_range_noflush(addr, PAGE_SIZE * 2); - local_flush_tlb_kernel_range(addr, end); -} - -#else /* USE_PGTABLE_MAPPING */ - -static inline int __zs_cpu_up(struct mapping_area *area) -{ - /* - * Make sure we don't leak memory if a cpu UP notification - * and zs_init() race and both call zs_cpu_up() on the same cpu - */ - if (area->vm_buf) - return 0; - area->vm_buf = (char *)__get_free_page(GFP_KERNEL); - if (!area->vm_buf) - return -ENOMEM; - return 0; -} - -static inline void __zs_cpu_down(struct mapping_area *area) -{ - if (area->vm_buf) - free_page((unsigned long)area->vm_buf); - area->vm_buf = NULL; -} - -static void *__zs_map_object(struct mapping_area *area, - struct page *pages[2], int off, int size) -{ - int sizes[2]; - void *addr; - char *buf = area->vm_buf; - - /* disable page faults to match kmap_atomic() return conditions */ - pagefault_disable(); - - /* no read fastpath */ - if (area->vm_mm == ZS_MM_WO) - goto out; - - sizes[0] = PAGE_SIZE - off; - sizes[1] = size - sizes[0]; - - /* copy object to per-cpu buffer */ - addr = kmap_atomic(pages[0]); - memcpy(buf, addr + off, sizes[0]); - kunmap_atomic(addr); - addr = kmap_atomic(pages[1]); - memcpy(buf + sizes[0], addr, sizes[1]); - kunmap_atomic(addr); -out: - return area->vm_buf; -} - -static void __zs_unmap_object(struct mapping_area *area, - struct page *pages[2], int off, int size) -{ - int sizes[2]; - void *addr; - char *buf = area->vm_buf; - - /* no write fastpath */ - if (area->vm_mm == ZS_MM_RO) - goto out; - - sizes[0] = PAGE_SIZE - off; - sizes[1] = size - sizes[0]; - - /* copy per-cpu buffer to object */ - addr = kmap_atomic(pages[0]); - memcpy(addr + off, buf, sizes[0]); - kunmap_atomic(addr); - addr = kmap_atomic(pages[1]); - memcpy(addr, buf + sizes[0], sizes[1]); - kunmap_atomic(addr); - -out: - /* enable page faults to match kunmap_atomic() return conditions */ - pagefault_enable(); -} - -#endif /* USE_PGTABLE_MAPPING */ - -static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action, - void *pcpu) -{ - int ret, cpu = (long)pcpu; - struct mapping_area *area; - - switch (action) { - case CPU_UP_PREPARE: - area = &per_cpu(zs_map_area, cpu); - ret = __zs_cpu_up(area); - if (ret) - return notifier_from_errno(ret); - break; - case CPU_DEAD: - case CPU_UP_CANCELED: - area = &per_cpu(zs_map_area, cpu); - __zs_cpu_down(area); - break; - } - - return NOTIFY_OK; -} - -static struct notifier_block zs_cpu_nb = { - .notifier_call = zs_cpu_notifier -}; - -static void zs_exit(void) -{ - int cpu; - - for_each_online_cpu(cpu) - zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu); - unregister_cpu_notifier(&zs_cpu_nb); -} - -static int zs_init(void) -{ - int cpu, ret; - - register_cpu_notifier(&zs_cpu_nb); - for_each_online_cpu(cpu) { - ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu); - if (notifier_to_errno(ret)) - goto fail; - } - return 0; -fail: - zs_exit(); - return notifier_to_errno(ret); -} - -struct zs_pool *zs_create_pool(const char *name, gfp_t flags) -{ - int i, ovhd_size; - struct zs_pool *pool; - - if (!name) - return NULL; - - ovhd_size = roundup(sizeof(*pool), PAGE_SIZE); - pool = kzalloc(ovhd_size, GFP_KERNEL); - if (!pool) - return NULL; - - for (i = 0; i < ZS_SIZE_CLASSES; i++) { - int size; - struct size_class *class; - - size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; - if (size > ZS_MAX_ALLOC_SIZE) - size = ZS_MAX_ALLOC_SIZE; - - class = &pool->size_class[i]; - class->size = size; - class->index = i; - spin_lock_init(&class->lock); - class->pages_per_zspage = get_pages_per_zspage(size); - - } - - pool->flags = flags; - pool->name = name; - - return pool; -} -EXPORT_SYMBOL_GPL(zs_create_pool); - -void zs_destroy_pool(struct zs_pool *pool) -{ - int i; - - for (i = 0; i < ZS_SIZE_CLASSES; i++) { - int fg; - struct size_class *class = &pool->size_class[i]; - - for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) { - if (class->fullness_list[fg]) { - pr_info("Freeing non-empty class with size " - "%db, fullness group %d\n", - class->size, fg); - } - } - } - kfree(pool); -} -EXPORT_SYMBOL_GPL(zs_destroy_pool); - -/** - * zs_malloc - Allocate block of given size from pool. - * @pool: pool to allocate from - * @size: size of block to allocate - * - * On success, handle to the allocated object is returned, - * otherwise 0. - * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. - */ -unsigned long zs_malloc(struct zs_pool *pool, size_t size) -{ - unsigned long obj; - struct link_free *link; - int class_idx; - struct size_class *class; - - struct page *first_page, *m_page; - unsigned long m_objidx, m_offset; - - if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) - return 0; - - class_idx = get_size_class_index(size); - class = &pool->size_class[class_idx]; - BUG_ON(class_idx != class->index); - - spin_lock(&class->lock); - first_page = find_get_zspage(class); - - if (!first_page) { - spin_unlock(&class->lock); - first_page = alloc_zspage(class, pool->flags); - if (unlikely(!first_page)) - return 0; - - set_zspage_mapping(first_page, class->index, ZS_EMPTY); - spin_lock(&class->lock); - class->pages_allocated += class->pages_per_zspage; - } - - obj = (unsigned long)first_page->freelist; - obj_handle_to_location(obj, &m_page, &m_objidx); - m_offset = obj_idx_to_offset(m_page, m_objidx, class->size); - - link = (struct link_free *)kmap_atomic(m_page) + - m_offset / sizeof(*link); - first_page->freelist = link->next; - memset(link, POISON_INUSE, sizeof(*link)); - kunmap_atomic(link); - - first_page->inuse++; - /* Now move the zspage to another fullness group, if required */ - fix_fullness_group(pool, first_page); - spin_unlock(&class->lock); - - return obj; -} -EXPORT_SYMBOL_GPL(zs_malloc); - -void zs_free(struct zs_pool *pool, unsigned long obj) -{ - struct link_free *link; - struct page *first_page, *f_page; - unsigned long f_objidx, f_offset; - - int class_idx; - struct size_class *class; - enum fullness_group fullness; - - if (unlikely(!obj)) - return; - - obj_handle_to_location(obj, &f_page, &f_objidx); - first_page = get_first_page(f_page); - - get_zspage_mapping(first_page, &class_idx, &fullness); - class = &pool->size_class[class_idx]; - f_offset = obj_idx_to_offset(f_page, f_objidx, class->size); - - spin_lock(&class->lock); - - /* Insert this object in containing zspage's freelist */ - link = (struct link_free *)((unsigned char *)kmap_atomic(f_page) - + f_offset); - link->next = first_page->freelist; - kunmap_atomic(link); - first_page->freelist = (void *)obj; - - first_page->inuse--; - fullness = fix_fullness_group(pool, first_page); - - if (fullness == ZS_EMPTY) - class->pages_allocated -= class->pages_per_zspage; - - spin_unlock(&class->lock); - - if (fullness == ZS_EMPTY) - free_zspage(first_page); -} -EXPORT_SYMBOL_GPL(zs_free); - -/** - * zs_map_object - get address of allocated object from handle. - * @pool: pool from which the object was allocated - * @handle: handle returned from zs_malloc - * - * Before using an object allocated from zs_malloc, it must be mapped using - * this function. When done with the object, it must be unmapped using - * zs_unmap_object. - * - * Only one object can be mapped per cpu at a time. There is no protection - * against nested mappings. - * - * This function returns with preemption and page faults disabled. -*/ -void *zs_map_object(struct zs_pool *pool, unsigned long handle, - enum zs_mapmode mm) -{ - struct page *page; - unsigned long obj_idx, off; - - unsigned int class_idx; - enum fullness_group fg; - struct size_class *class; - struct mapping_area *area; - struct page *pages[2]; - - BUG_ON(!handle); - - /* - * Because we use per-cpu mapping areas shared among the - * pools/users, we can't allow mapping in interrupt context - * because it can corrupt another users mappings. - */ - BUG_ON(in_interrupt()); - - obj_handle_to_location(handle, &page, &obj_idx); - get_zspage_mapping(get_first_page(page), &class_idx, &fg); - class = &pool->size_class[class_idx]; - off = obj_idx_to_offset(page, obj_idx, class->size); - - area = &get_cpu_var(zs_map_area); - area->vm_mm = mm; - if (off + class->size <= PAGE_SIZE) { - /* this object is contained entirely within a page */ - area->vm_addr = kmap_atomic(page); - return area->vm_addr + off; - } - - /* this object spans two pages */ - pages[0] = page; - pages[1] = get_next_page(page); - BUG_ON(!pages[1]); - - return __zs_map_object(area, pages, off, class->size); -} -EXPORT_SYMBOL_GPL(zs_map_object); - -void zs_unmap_object(struct zs_pool *pool, unsigned long handle) -{ - struct page *page; - unsigned long obj_idx, off; - - unsigned int class_idx; - enum fullness_group fg; - struct size_class *class; - struct mapping_area *area; - - BUG_ON(!handle); - - obj_handle_to_location(handle, &page, &obj_idx); - get_zspage_mapping(get_first_page(page), &class_idx, &fg); - class = &pool->size_class[class_idx]; - off = obj_idx_to_offset(page, obj_idx, class->size); - - area = &__get_cpu_var(zs_map_area); - if (off + class->size <= PAGE_SIZE) - kunmap_atomic(area->vm_addr); - else { - struct page *pages[2]; - - pages[0] = page; - pages[1] = get_next_page(page); - BUG_ON(!pages[1]); - - __zs_unmap_object(area, pages, off, class->size); - } - put_cpu_var(zs_map_area); -} -EXPORT_SYMBOL_GPL(zs_unmap_object); - -u64 zs_get_total_size_bytes(struct zs_pool *pool) -{ - int i; - u64 npages = 0; - - for (i = 0; i < ZS_SIZE_CLASSES; i++) - npages += pool->size_class[i].pages_allocated; - - return npages << PAGE_SHIFT; -} -EXPORT_SYMBOL_GPL(zs_get_total_size_bytes); - -module_init(zs_init); -module_exit(zs_exit); - -MODULE_LICENSE("Dual BSD/GPL"); -MODULE_AUTHOR("Nitin Gupta <ngupta@xxxxxxxxxx>"); diff --git a/drivers/staging/zsmalloc/zsmalloc.h b/drivers/staging/zsmalloc/zsmalloc.h deleted file mode 100644 index de2e8bf..0000000 --- a/drivers/staging/zsmalloc/zsmalloc.h +++ /dev/null @@ -1,43 +0,0 @@ -/* - * zsmalloc memory allocator - * - * Copyright (C) 2011 Nitin Gupta - * - * This code is released using a dual license strategy: BSD/GPL - * You can choose the license that better fits your requirements. - * - * Released under the terms of 3-clause BSD License - * Released under the terms of GNU General Public License Version 2.0 - */ - -#ifndef _ZS_MALLOC_H_ -#define _ZS_MALLOC_H_ - -#include <linux/types.h> - -/* - * zsmalloc mapping modes - * - * NOTE: These only make a difference when a mapped object spans pages -*/ -enum zs_mapmode { - ZS_MM_RW, /* normal read-write mapping */ - ZS_MM_RO, /* read-only (no copy-out at unmap time) */ - ZS_MM_WO /* write-only (no copy-in at map time) */ -}; - -struct zs_pool; - -struct zs_pool *zs_create_pool(const char *name, gfp_t flags); -void zs_destroy_pool(struct zs_pool *pool); - -unsigned long zs_malloc(struct zs_pool *pool, size_t size); -void zs_free(struct zs_pool *pool, unsigned long obj); - -void *zs_map_object(struct zs_pool *pool, unsigned long handle, - enum zs_mapmode mm); -void zs_unmap_object(struct zs_pool *pool, unsigned long handle); - -u64 zs_get_total_size_bytes(struct zs_pool *pool); - -#endif diff --git a/include/linux/zsmalloc.h b/include/linux/zsmalloc.h new file mode 100644 index 0000000..de2e8bf --- /dev/null +++ b/include/linux/zsmalloc.h @@ -0,0 +1,43 @@ +/* + * zsmalloc memory allocator + * + * Copyright (C) 2011 Nitin Gupta + * + * This code is released using a dual license strategy: BSD/GPL + * You can choose the license that better fits your requirements. + * + * Released under the terms of 3-clause BSD License + * Released under the terms of GNU General Public License Version 2.0 + */ + +#ifndef _ZS_MALLOC_H_ +#define _ZS_MALLOC_H_ + +#include <linux/types.h> + +/* + * zsmalloc mapping modes + * + * NOTE: These only make a difference when a mapped object spans pages +*/ +enum zs_mapmode { + ZS_MM_RW, /* normal read-write mapping */ + ZS_MM_RO, /* read-only (no copy-out at unmap time) */ + ZS_MM_WO /* write-only (no copy-in at map time) */ +}; + +struct zs_pool; + +struct zs_pool *zs_create_pool(const char *name, gfp_t flags); +void zs_destroy_pool(struct zs_pool *pool); + +unsigned long zs_malloc(struct zs_pool *pool, size_t size); +void zs_free(struct zs_pool *pool, unsigned long obj); + +void *zs_map_object(struct zs_pool *pool, unsigned long handle, + enum zs_mapmode mm); +void zs_unmap_object(struct zs_pool *pool, unsigned long handle); + +u64 zs_get_total_size_bytes(struct zs_pool *pool); + +#endif diff --git a/lib/Kconfig b/lib/Kconfig index 4b31a46..9b1db85 100644 --- a/lib/Kconfig +++ b/lib/Kconfig @@ -216,6 +216,24 @@ config DECOMPRESS_LZO config GENERIC_ALLOCATOR boolean +config ZSMALLOC + tristate "Memory allocator for compressed pages" + default n + help + zsmalloc is a slab-based memory allocator designed to store + compressed RAM pages. zsmalloc uses a memory pool that combines + single pages into higher order pages by linking them together + using the fields of the struct page. Allocations are then + mapped through copy buffers or VM mapping, in order to reduce + memory pool fragmentation and increase allocation success rate under + memory pressure. + + This results in a non-standard allocator interface where + a handle, not a pointer, is returned by the allocation function. + This handle must be mapped in order to access the allocated space. + + If unsure, say N. + # # reed solomon support is select'ed if needed # diff --git a/lib/Makefile b/lib/Makefile index 3bb922d..1fe3643 100644 --- a/lib/Makefile +++ b/lib/Makefile @@ -64,6 +64,7 @@ obj-$(CONFIG_CRC7) += crc7.o obj-$(CONFIG_LIBCRC32C) += libcrc32c.o obj-$(CONFIG_CRC8) += crc8.o obj-$(CONFIG_GENERIC_ALLOCATOR) += genalloc.o +obj-$(CONFIG_ZSMALLOC) += zsmalloc.o obj-$(CONFIG_ZLIB_INFLATE) += zlib_inflate/ obj-$(CONFIG_ZLIB_DEFLATE) += zlib_deflate/ diff --git a/lib/zsmalloc.c b/lib/zsmalloc.c new file mode 100644 index 0000000..2cde21e --- /dev/null +++ b/lib/zsmalloc.c @@ -0,0 +1,1064 @@ +/* + * zsmalloc memory allocator + * + * Copyright (C) 2011 Nitin Gupta + * + * This code is released using a dual license strategy: BSD/GPL + * You can choose the license that better fits your requirements. + * + * Released under the terms of 3-clause BSD License + * Released under the terms of GNU General Public License Version 2.0 + */ + + +/* + * This allocator is designed for use with zcache and zram. Thus, the + * allocator is supposed to work well under low memory conditions. In + * particular, it never attempts higher order page allocation which is + * very likely to fail under memory pressure. On the other hand, if we + * just use single (0-order) pages, it would suffer from very high + * fragmentation -- any object of size PAGE_SIZE/2 or larger would occupy + * an entire page. This was one of the major issues with its predecessor + * (xvmalloc). + * + * To overcome these issues, zsmalloc allocates a bunch of 0-order pages + * and links them together using various 'struct page' fields. These linked + * pages act as a single higher-order page i.e. an object can span 0-order + * page boundaries. The code refers to these linked pages as a single entity + * called zspage. + * + * Following is how we use various fields and flags of underlying + * struct page(s) to form a zspage. + * + * Usage of struct page fields: + * page->first_page: points to the first component (0-order) page + * page->index (union with page->freelist): offset of the first object + * starting in this page. For the first page, this is + * always 0, so we use this field (aka freelist) to point + * to the first free object in zspage. + * page->lru: links together all component pages (except the first page) + * of a zspage + * + * For _first_ page only: + * + * page->private (union with page->first_page): refers to the + * component page after the first page + * page->freelist: points to the first free object in zspage. + * Free objects are linked together using in-place + * metadata. + * page->objects: maximum number of objects we can store in this + * zspage (class->zspage_order * PAGE_SIZE / class->size) + * page->lru: links together first pages of various zspages. + * Basically forming list of zspages in a fullness group. + * page->mapping: class index and fullness group of the zspage + * + * Usage of struct page flags: + * PG_private: identifies the first component page + * PG_private2: identifies the last component page + * + */ + +#ifdef CONFIG_ZSMALLOC_DEBUG +#define DEBUG +#endif + +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/bitops.h> +#include <linux/errno.h> +#include <linux/highmem.h> +#include <linux/init.h> +#include <linux/string.h> +#include <linux/slab.h> +#include <asm/tlbflush.h> +#include <asm/pgtable.h> +#include <linux/cpumask.h> +#include <linux/cpu.h> +#include <linux/vmalloc.h> +#include <linux/hardirq.h> +#include <linux/spinlock.h> +#include <linux/types.h> + +#include <linux/zsmalloc.h> + +/* + * This must be power of 2 and greater than of equal to sizeof(link_free). + * These two conditions ensure that any 'struct link_free' itself doesn't + * span more than 1 page which avoids complex case of mapping 2 pages simply + * to restore link_free pointer values. + */ +#define ZS_ALIGN 8 + +/* + * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) + * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. + */ +#define ZS_MAX_ZSPAGE_ORDER 2 +#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) + +/* + * Object location (<PFN>, <obj_idx>) is encoded as + * as single (void *) handle value. + * + * Note that object index <obj_idx> is relative to system + * page <PFN> it is stored in, so for each sub-page belonging + * to a zspage, obj_idx starts with 0. + * + * This is made more complicated by various memory models and PAE. + */ + +#ifndef MAX_PHYSMEM_BITS +#ifdef CONFIG_HIGHMEM64G +#define MAX_PHYSMEM_BITS 36 +#else /* !CONFIG_HIGHMEM64G */ +/* + * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just + * be PAGE_SHIFT + */ +#define MAX_PHYSMEM_BITS BITS_PER_LONG +#endif +#endif +#define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT) +#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS) +#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) + +#define MAX(a, b) ((a) >= (b) ? (a) : (b)) +/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ +#define ZS_MIN_ALLOC_SIZE \ + MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) +#define ZS_MAX_ALLOC_SIZE PAGE_SIZE + +/* + * On systems with 4K page size, this gives 254 size classes! There is a + * trader-off here: + * - Large number of size classes is potentially wasteful as free page are + * spread across these classes + * - Small number of size classes causes large internal fragmentation + * - Probably its better to use specific size classes (empirically + * determined). NOTE: all those class sizes must be set as multiple of + * ZS_ALIGN to make sure link_free itself never has to span 2 pages. + * + * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN + * (reason above) + */ +#define ZS_SIZE_CLASS_DELTA 16 +#define ZS_SIZE_CLASSES ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / \ + ZS_SIZE_CLASS_DELTA + 1) + +/* + * We do not maintain any list for completely empty or full pages + */ +enum fullness_group { + ZS_ALMOST_FULL, + ZS_ALMOST_EMPTY, + _ZS_NR_FULLNESS_GROUPS, + + ZS_EMPTY, + ZS_FULL +}; + +/* + * We assign a page to ZS_ALMOST_EMPTY fullness group when: + * n <= N / f, where + * n = number of allocated objects + * N = total number of objects zspage can store + * f = 1/fullness_threshold_frac + * + * Similarly, we assign zspage to: + * ZS_ALMOST_FULL when n > N / f + * ZS_EMPTY when n == 0 + * ZS_FULL when n == N + * + * (see: fix_fullness_group()) + */ +static const int fullness_threshold_frac = 4; + +struct size_class { + /* + * Size of objects stored in this class. Must be multiple + * of ZS_ALIGN. + */ + int size; + unsigned int index; + + /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ + int pages_per_zspage; + + spinlock_t lock; + + /* stats */ + u64 pages_allocated; + + struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS]; +}; + +/* + * Placed within free objects to form a singly linked list. + * For every zspage, first_page->freelist gives head of this list. + * + * This must be power of 2 and less than or equal to ZS_ALIGN + */ +struct link_free { + /* Handle of next free chunk (encodes <PFN, obj_idx>) */ + void *next; +}; + +struct zs_pool { + struct size_class size_class[ZS_SIZE_CLASSES]; + + gfp_t flags; /* allocation flags used when growing pool */ + const char *name; +}; + +/* + * A zspage's class index and fullness group + * are encoded in its (first)page->mapping + */ +#define CLASS_IDX_BITS 28 +#define FULLNESS_BITS 4 +#define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1) +#define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1) + +/* + * By default, zsmalloc uses a copy-based object mapping method to access + * allocations that span two pages. However, if a particular architecture + * 1) Implements local_flush_tlb_kernel_range() and 2) Performs VM mapping + * faster than copying, then it should be added here so that + * USE_PGTABLE_MAPPING is defined. This causes zsmalloc to use page table + * mapping rather than copying + * for object mapping. +*/ +#if defined(CONFIG_ARM) +#define USE_PGTABLE_MAPPING +#endif + +struct mapping_area { +#ifdef USE_PGTABLE_MAPPING + struct vm_struct *vm; /* vm area for mapping object that span pages */ +#else + char *vm_buf; /* copy buffer for objects that span pages */ +#endif + char *vm_addr; /* address of kmap_atomic()'ed pages */ + enum zs_mapmode vm_mm; /* mapping mode */ +}; + + +/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ +static DEFINE_PER_CPU(struct mapping_area, zs_map_area); + +static int is_first_page(struct page *page) +{ + return PagePrivate(page); +} + +static int is_last_page(struct page *page) +{ + return PagePrivate2(page); +} + +static void get_zspage_mapping(struct page *page, unsigned int *class_idx, + enum fullness_group *fullness) +{ + unsigned long m; + BUG_ON(!is_first_page(page)); + + m = (unsigned long)page->mapping; + *fullness = m & FULLNESS_MASK; + *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK; +} + +static void set_zspage_mapping(struct page *page, unsigned int class_idx, + enum fullness_group fullness) +{ + unsigned long m; + BUG_ON(!is_first_page(page)); + + m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) | + (fullness & FULLNESS_MASK); + page->mapping = (struct address_space *)m; +} + +static int get_size_class_index(int size) +{ + int idx = 0; + + if (likely(size > ZS_MIN_ALLOC_SIZE)) + idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, + ZS_SIZE_CLASS_DELTA); + + return idx; +} + +static enum fullness_group get_fullness_group(struct page *page) +{ + int inuse, max_objects; + enum fullness_group fg; + BUG_ON(!is_first_page(page)); + + inuse = page->inuse; + max_objects = page->objects; + + if (inuse == 0) + fg = ZS_EMPTY; + else if (inuse == max_objects) + fg = ZS_FULL; + else if (inuse <= max_objects / fullness_threshold_frac) + fg = ZS_ALMOST_EMPTY; + else + fg = ZS_ALMOST_FULL; + + return fg; +} + +static void insert_zspage(struct page *page, struct size_class *class, + enum fullness_group fullness) +{ + struct page **head; + + BUG_ON(!is_first_page(page)); + + if (fullness >= _ZS_NR_FULLNESS_GROUPS) + return; + + head = &class->fullness_list[fullness]; + if (*head) + list_add_tail(&page->lru, &(*head)->lru); + + *head = page; +} + +static void remove_zspage(struct page *page, struct size_class *class, + enum fullness_group fullness) +{ + struct page **head; + + BUG_ON(!is_first_page(page)); + + if (fullness >= _ZS_NR_FULLNESS_GROUPS) + return; + + head = &class->fullness_list[fullness]; + BUG_ON(!*head); + if (list_empty(&(*head)->lru)) + *head = NULL; + else if (*head == page) + *head = (struct page *)list_entry((*head)->lru.next, + struct page, lru); + + list_del_init(&page->lru); +} + +static enum fullness_group fix_fullness_group(struct zs_pool *pool, + struct page *page) +{ + int class_idx; + struct size_class *class; + enum fullness_group currfg, newfg; + + BUG_ON(!is_first_page(page)); + + get_zspage_mapping(page, &class_idx, &currfg); + newfg = get_fullness_group(page); + if (newfg == currfg) + goto out; + + class = &pool->size_class[class_idx]; + remove_zspage(page, class, currfg); + insert_zspage(page, class, newfg); + set_zspage_mapping(page, class_idx, newfg); + +out: + return newfg; +} + +/* + * We have to decide on how many pages to link together + * to form a zspage for each size class. This is important + * to reduce wastage due to unusable space left at end of + * each zspage which is given as: + * wastage = Zp - Zp % size_class + * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... + * + * For example, for size class of 3/8 * PAGE_SIZE, we should + * link together 3 PAGE_SIZE sized pages to form a zspage + * since then we can perfectly fit in 8 such objects. + */ +static int get_pages_per_zspage(int class_size) +{ + int i, max_usedpc = 0; + /* zspage order which gives maximum used size per KB */ + int max_usedpc_order = 1; + + for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { + int zspage_size; + int waste, usedpc; + + zspage_size = i * PAGE_SIZE; + waste = zspage_size % class_size; + usedpc = (zspage_size - waste) * 100 / zspage_size; + + if (usedpc > max_usedpc) { + max_usedpc = usedpc; + max_usedpc_order = i; + } + } + + return max_usedpc_order; +} + +/* + * A single 'zspage' is composed of many system pages which are + * linked together using fields in struct page. This function finds + * the first/head page, given any component page of a zspage. + */ +static struct page *get_first_page(struct page *page) +{ + if (is_first_page(page)) + return page; + else + return page->first_page; +} + +static struct page *get_next_page(struct page *page) +{ + struct page *next; + + if (is_last_page(page)) + next = NULL; + else if (is_first_page(page)) + next = (struct page *)page->private; + else + next = list_entry(page->lru.next, struct page, lru); + + return next; +} + +/* Encode <page, obj_idx> as a single handle value */ +static void *obj_location_to_handle(struct page *page, unsigned long obj_idx) +{ + unsigned long handle; + + if (!page) { + BUG_ON(obj_idx); + return NULL; + } + + handle = page_to_pfn(page) << OBJ_INDEX_BITS; + handle |= (obj_idx & OBJ_INDEX_MASK); + + return (void *)handle; +} + +/* Decode <page, obj_idx> pair from the given object handle */ +static void obj_handle_to_location(unsigned long handle, struct page **page, + unsigned long *obj_idx) +{ + *page = pfn_to_page(handle >> OBJ_INDEX_BITS); + *obj_idx = handle & OBJ_INDEX_MASK; +} + +static unsigned long obj_idx_to_offset(struct page *page, + unsigned long obj_idx, int class_size) +{ + unsigned long off = 0; + + if (!is_first_page(page)) + off = page->index; + + return off + obj_idx * class_size; +} + +static void reset_page(struct page *page) +{ + clear_bit(PG_private, &page->flags); + clear_bit(PG_private_2, &page->flags); + set_page_private(page, 0); + page->mapping = NULL; + page->freelist = NULL; + reset_page_mapcount(page); +} + +static void free_zspage(struct page *first_page) +{ + struct page *nextp, *tmp, *head_extra; + + BUG_ON(!is_first_page(first_page)); + BUG_ON(first_page->inuse); + + head_extra = (struct page *)page_private(first_page); + + reset_page(first_page); + __free_page(first_page); + + /* zspage with only 1 system page */ + if (!head_extra) + return; + + list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) { + list_del(&nextp->lru); + reset_page(nextp); + __free_page(nextp); + } + reset_page(head_extra); + __free_page(head_extra); +} + +/* Initialize a newly allocated zspage */ +static void init_zspage(struct page *first_page, struct size_class *class) +{ + unsigned long off = 0; + struct page *page = first_page; + + BUG_ON(!is_first_page(first_page)); + while (page) { + struct page *next_page; + struct link_free *link; + unsigned int i, objs_on_page; + + /* + * page->index stores offset of first object starting + * in the page. For the first page, this is always 0, + * so we use first_page->index (aka ->freelist) to store + * head of corresponding zspage's freelist. + */ + if (page != first_page) + page->index = off; + + link = (struct link_free *)kmap_atomic(page) + + off / sizeof(*link); + objs_on_page = (PAGE_SIZE - off) / class->size; + + for (i = 1; i <= objs_on_page; i++) { + off += class->size; + if (off < PAGE_SIZE) { + link->next = obj_location_to_handle(page, i); + link += class->size / sizeof(*link); + } + } + + /* + * We now come to the last (full or partial) object on this + * page, which must point to the first object on the next + * page (if present) + */ + next_page = get_next_page(page); + link->next = obj_location_to_handle(next_page, 0); + kunmap_atomic(link); + page = next_page; + off = (off + class->size) % PAGE_SIZE; + } +} + +/* + * Allocate a zspage for the given size class + */ +static struct page *alloc_zspage(struct size_class *class, gfp_t flags) +{ + int i, error; + struct page *first_page = NULL, *uninitialized_var(prev_page); + + /* + * Allocate individual pages and link them together as: + * 1. first page->private = first sub-page + * 2. all sub-pages are linked together using page->lru + * 3. each sub-page is linked to the first page using page->first_page + * + * For each size class, First/Head pages are linked together using + * page->lru. Also, we set PG_private to identify the first page + * (i.e. no other sub-page has this flag set) and PG_private_2 to + * identify the last page. + */ + error = -ENOMEM; + for (i = 0; i < class->pages_per_zspage; i++) { + struct page *page; + + page = alloc_page(flags); + if (!page) + goto cleanup; + + INIT_LIST_HEAD(&page->lru); + if (i == 0) { /* first page */ + SetPagePrivate(page); + set_page_private(page, 0); + first_page = page; + first_page->inuse = 0; + } + if (i == 1) + first_page->private = (unsigned long)page; + if (i >= 1) + page->first_page = first_page; + if (i >= 2) + list_add(&page->lru, &prev_page->lru); + if (i == class->pages_per_zspage - 1) /* last page */ + SetPagePrivate2(page); + prev_page = page; + } + + init_zspage(first_page, class); + + first_page->freelist = obj_location_to_handle(first_page, 0); + /* Maximum number of objects we can store in this zspage */ + first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size; + + error = 0; /* Success */ + +cleanup: + if (unlikely(error) && first_page) { + free_zspage(first_page); + first_page = NULL; + } + + return first_page; +} + +static struct page *find_get_zspage(struct size_class *class) +{ + int i; + struct page *page; + + for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) { + page = class->fullness_list[i]; + if (page) + break; + } + + return page; +} + +#ifdef USE_PGTABLE_MAPPING +static inline int __zs_cpu_up(struct mapping_area *area) +{ + /* + * Make sure we don't leak memory if a cpu UP notification + * and zs_init() race and both call zs_cpu_up() on the same cpu + */ + if (area->vm) + return 0; + area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL); + if (!area->vm) + return -ENOMEM; + return 0; +} + +static inline void __zs_cpu_down(struct mapping_area *area) +{ + if (area->vm) + free_vm_area(area->vm); + area->vm = NULL; +} + +static inline void *__zs_map_object(struct mapping_area *area, + struct page *pages[2], int off, int size) +{ + BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, &pages)); + area->vm_addr = area->vm->addr; + return area->vm_addr + off; +} + +static inline void __zs_unmap_object(struct mapping_area *area, + struct page *pages[2], int off, int size) +{ + unsigned long addr = (unsigned long)area->vm_addr; + unsigned long end = addr + (PAGE_SIZE * 2); + + flush_cache_vunmap(addr, end); + unmap_kernel_range_noflush(addr, PAGE_SIZE * 2); + local_flush_tlb_kernel_range(addr, end); +} + +#else /* USE_PGTABLE_MAPPING */ + +static inline int __zs_cpu_up(struct mapping_area *area) +{ + /* + * Make sure we don't leak memory if a cpu UP notification + * and zs_init() race and both call zs_cpu_up() on the same cpu + */ + if (area->vm_buf) + return 0; + area->vm_buf = (char *)__get_free_page(GFP_KERNEL); + if (!area->vm_buf) + return -ENOMEM; + return 0; +} + +static inline void __zs_cpu_down(struct mapping_area *area) +{ + if (area->vm_buf) + free_page((unsigned long)area->vm_buf); + area->vm_buf = NULL; +} + +static void *__zs_map_object(struct mapping_area *area, + struct page *pages[2], int off, int size) +{ + int sizes[2]; + void *addr; + char *buf = area->vm_buf; + + /* disable page faults to match kmap_atomic() return conditions */ + pagefault_disable(); + + /* no read fastpath */ + if (area->vm_mm == ZS_MM_WO) + goto out; + + sizes[0] = PAGE_SIZE - off; + sizes[1] = size - sizes[0]; + + /* copy object to per-cpu buffer */ + addr = kmap_atomic(pages[0]); + memcpy(buf, addr + off, sizes[0]); + kunmap_atomic(addr); + addr = kmap_atomic(pages[1]); + memcpy(buf + sizes[0], addr, sizes[1]); + kunmap_atomic(addr); +out: + return area->vm_buf; +} + +static void __zs_unmap_object(struct mapping_area *area, + struct page *pages[2], int off, int size) +{ + int sizes[2]; + void *addr; + char *buf = area->vm_buf; + + /* no write fastpath */ + if (area->vm_mm == ZS_MM_RO) + goto out; + + sizes[0] = PAGE_SIZE - off; + sizes[1] = size - sizes[0]; + + /* copy per-cpu buffer to object */ + addr = kmap_atomic(pages[0]); + memcpy(addr + off, buf, sizes[0]); + kunmap_atomic(addr); + addr = kmap_atomic(pages[1]); + memcpy(addr, buf + sizes[0], sizes[1]); + kunmap_atomic(addr); + +out: + /* enable page faults to match kunmap_atomic() return conditions */ + pagefault_enable(); +} + +#endif /* USE_PGTABLE_MAPPING */ + +static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action, + void *pcpu) +{ + int ret, cpu = (long)pcpu; + struct mapping_area *area; + + switch (action) { + case CPU_UP_PREPARE: + area = &per_cpu(zs_map_area, cpu); + ret = __zs_cpu_up(area); + if (ret) + return notifier_from_errno(ret); + break; + case CPU_DEAD: + case CPU_UP_CANCELED: + area = &per_cpu(zs_map_area, cpu); + __zs_cpu_down(area); + break; + } + + return NOTIFY_OK; +} + +static struct notifier_block zs_cpu_nb = { + .notifier_call = zs_cpu_notifier +}; + +static void zs_exit(void) +{ + int cpu; + + for_each_online_cpu(cpu) + zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu); + unregister_cpu_notifier(&zs_cpu_nb); +} + +static int zs_init(void) +{ + int cpu, ret; + + register_cpu_notifier(&zs_cpu_nb); + for_each_online_cpu(cpu) { + ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu); + if (notifier_to_errno(ret)) + goto fail; + } + return 0; +fail: + zs_exit(); + return notifier_to_errno(ret); +} + +struct zs_pool *zs_create_pool(const char *name, gfp_t flags) +{ + int i, ovhd_size; + struct zs_pool *pool; + + if (!name) + return NULL; + + ovhd_size = roundup(sizeof(*pool), PAGE_SIZE); + pool = kzalloc(ovhd_size, GFP_KERNEL); + if (!pool) + return NULL; + + for (i = 0; i < ZS_SIZE_CLASSES; i++) { + int size; + struct size_class *class; + + size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; + if (size > ZS_MAX_ALLOC_SIZE) + size = ZS_MAX_ALLOC_SIZE; + + class = &pool->size_class[i]; + class->size = size; + class->index = i; + spin_lock_init(&class->lock); + class->pages_per_zspage = get_pages_per_zspage(size); + + } + + pool->flags = flags; + pool->name = name; + + return pool; +} +EXPORT_SYMBOL_GPL(zs_create_pool); + +void zs_destroy_pool(struct zs_pool *pool) +{ + int i; + + for (i = 0; i < ZS_SIZE_CLASSES; i++) { + int fg; + struct size_class *class = &pool->size_class[i]; + + for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) { + if (class->fullness_list[fg]) { + pr_info("Freeing non-empty class with size " + "%db, fullness group %d\n", + class->size, fg); + } + } + } + kfree(pool); +} +EXPORT_SYMBOL_GPL(zs_destroy_pool); + +/** + * zs_malloc - Allocate block of given size from pool. + * @pool: pool to allocate from + * @size: size of block to allocate + * + * On success, handle to the allocated object is returned, + * otherwise 0. + * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. + */ +unsigned long zs_malloc(struct zs_pool *pool, size_t size) +{ + unsigned long obj; + struct link_free *link; + int class_idx; + struct size_class *class; + + struct page *first_page, *m_page; + unsigned long m_objidx, m_offset; + + if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) + return 0; + + class_idx = get_size_class_index(size); + class = &pool->size_class[class_idx]; + BUG_ON(class_idx != class->index); + + spin_lock(&class->lock); + first_page = find_get_zspage(class); + + if (!first_page) { + spin_unlock(&class->lock); + first_page = alloc_zspage(class, pool->flags); + if (unlikely(!first_page)) + return 0; + + set_zspage_mapping(first_page, class->index, ZS_EMPTY); + spin_lock(&class->lock); + class->pages_allocated += class->pages_per_zspage; + } + + obj = (unsigned long)first_page->freelist; + obj_handle_to_location(obj, &m_page, &m_objidx); + m_offset = obj_idx_to_offset(m_page, m_objidx, class->size); + + link = (struct link_free *)kmap_atomic(m_page) + + m_offset / sizeof(*link); + first_page->freelist = link->next; + memset(link, POISON_INUSE, sizeof(*link)); + kunmap_atomic(link); + + first_page->inuse++; + /* Now move the zspage to another fullness group, if required */ + fix_fullness_group(pool, first_page); + spin_unlock(&class->lock); + + return obj; +} +EXPORT_SYMBOL_GPL(zs_malloc); + +void zs_free(struct zs_pool *pool, unsigned long obj) +{ + struct link_free *link; + struct page *first_page, *f_page; + unsigned long f_objidx, f_offset; + + int class_idx; + struct size_class *class; + enum fullness_group fullness; + + if (unlikely(!obj)) + return; + + obj_handle_to_location(obj, &f_page, &f_objidx); + first_page = get_first_page(f_page); + + get_zspage_mapping(first_page, &class_idx, &fullness); + class = &pool->size_class[class_idx]; + f_offset = obj_idx_to_offset(f_page, f_objidx, class->size); + + spin_lock(&class->lock); + + /* Insert this object in containing zspage's freelist */ + link = (struct link_free *)((unsigned char *)kmap_atomic(f_page) + + f_offset); + link->next = first_page->freelist; + kunmap_atomic(link); + first_page->freelist = (void *)obj; + + first_page->inuse--; + fullness = fix_fullness_group(pool, first_page); + + if (fullness == ZS_EMPTY) + class->pages_allocated -= class->pages_per_zspage; + + spin_unlock(&class->lock); + + if (fullness == ZS_EMPTY) + free_zspage(first_page); +} +EXPORT_SYMBOL_GPL(zs_free); + +/** + * zs_map_object - get address of allocated object from handle. + * @pool: pool from which the object was allocated + * @handle: handle returned from zs_malloc + * + * Before using an object allocated from zs_malloc, it must be mapped using + * this function. When done with the object, it must be unmapped using + * zs_unmap_object. + * + * Only one object can be mapped per cpu at a time. There is no protection + * against nested mappings. + * + * This function returns with preemption and page faults disabled. +*/ +void *zs_map_object(struct zs_pool *pool, unsigned long handle, + enum zs_mapmode mm) +{ + struct page *page; + unsigned long obj_idx, off; + + unsigned int class_idx; + enum fullness_group fg; + struct size_class *class; + struct mapping_area *area; + struct page *pages[2]; + + BUG_ON(!handle); + + /* + * Because we use per-cpu mapping areas shared among the + * pools/users, we can't allow mapping in interrupt context + * because it can corrupt another users mappings. + */ + BUG_ON(in_interrupt()); + + obj_handle_to_location(handle, &page, &obj_idx); + get_zspage_mapping(get_first_page(page), &class_idx, &fg); + class = &pool->size_class[class_idx]; + off = obj_idx_to_offset(page, obj_idx, class->size); + + area = &get_cpu_var(zs_map_area); + area->vm_mm = mm; + if (off + class->size <= PAGE_SIZE) { + /* this object is contained entirely within a page */ + area->vm_addr = kmap_atomic(page); + return area->vm_addr + off; + } + + /* this object spans two pages */ + pages[0] = page; + pages[1] = get_next_page(page); + BUG_ON(!pages[1]); + + return __zs_map_object(area, pages, off, class->size); +} +EXPORT_SYMBOL_GPL(zs_map_object); + +void zs_unmap_object(struct zs_pool *pool, unsigned long handle) +{ + struct page *page; + unsigned long obj_idx, off; + + unsigned int class_idx; + enum fullness_group fg; + struct size_class *class; + struct mapping_area *area; + + BUG_ON(!handle); + + obj_handle_to_location(handle, &page, &obj_idx); + get_zspage_mapping(get_first_page(page), &class_idx, &fg); + class = &pool->size_class[class_idx]; + off = obj_idx_to_offset(page, obj_idx, class->size); + + area = &__get_cpu_var(zs_map_area); + if (off + class->size <= PAGE_SIZE) + kunmap_atomic(area->vm_addr); + else { + struct page *pages[2]; + + pages[0] = page; + pages[1] = get_next_page(page); + BUG_ON(!pages[1]); + + __zs_unmap_object(area, pages, off, class->size); + } + put_cpu_var(zs_map_area); +} +EXPORT_SYMBOL_GPL(zs_unmap_object); + +u64 zs_get_total_size_bytes(struct zs_pool *pool) +{ + int i; + u64 npages = 0; + + for (i = 0; i < ZS_SIZE_CLASSES; i++) + npages += pool->size_class[i].pages_allocated; + + return npages << PAGE_SHIFT; +} +EXPORT_SYMBOL_GPL(zs_get_total_size_bytes); + +module_init(zs_init); +module_exit(zs_exit); + +MODULE_LICENSE("Dual BSD/GPL"); +MODULE_AUTHOR("Nitin Gupta <ngupta@xxxxxxxxxx>"); -- 1.7.9.5 -- To unsubscribe, send a message with 'unsubscribe linux-mm' in the body to majordomo@xxxxxxxxx. For more info on Linux MM, see: http://www.linux-mm.org/ . Don't email: <a href=mailto:"dont@xxxxxxxxx"> email@xxxxxxxxx </a>