On 11/06/2012 04:14 AM, Mel Gorman wrote:
From: Peter Zijlstra <a.p.zijlstra@xxxxxxxxx> Note: The scan period is much larger than it was in the original patch. The reason was because the system CPU usage went through the roof with a sample period of 100ms but it was unsuitable to have a situation where a large process could stall for excessively long updating pte_numa. This may need to be tuned again if a placement policy converges too slowly. Previously, to probe the working set of a task, we'd use a very simple and crude method: mark all of its address space PROT_NONE. That method has various (obvious) disadvantages: - it samples the working set at dissimilar rates, giving some tasks a sampling quality advantage over others. - creates performance problems for tasks with very large working sets - over-samples processes with large address spaces but which only very rarely execute Improve that method by keeping a rotating offset into the address space that marks the current position of the scan, and advance it by a constant rate (in a CPU cycles execution proportional manner). If the offset reaches the last mapped address of the mm then it then it starts over at the first address. The per-task nature of the working set sampling functionality in this tree allows such constant rate, per task, execution-weight proportional sampling of the working set, with an adaptive sampling interval/frequency that goes from once per 2 seconds up to just once per 32 seconds. The current sampling volume is 256 MB per interval. As tasks mature and converge their working set, so does the sampling rate slow down to just a trickle, 256 MB per 8 seconds of CPU time executed. This, beyond being adaptive, also rate-limits rarely executing systems and does not over-sample on overloaded systems. [ In AutoNUMA speak, this patch deals with the effective sampling rate of the 'hinting page fault'. AutoNUMA's scanning is currently rate-limited, but it is also fundamentally single-threaded, executing in the knuma_scand kernel thread, so the limit in AutoNUMA is global and does not scale up with the number of CPUs, nor does it scan tasks in an execution proportional manner. So the idea of rate-limiting the scanning was first implemented in the AutoNUMA tree via a global rate limit. This patch goes beyond that by implementing an execution rate proportional working set sampling rate that is not implemented via a single global scanning daemon. ] [ Dan Carpenter pointed out a possible NULL pointer dereference in the first version of this patch. ] Based-on-idea-by: Andrea Arcangeli <aarcange@xxxxxxxxxx> Bug-Found-By: Dan Carpenter <dan.carpenter@xxxxxxxxxx> Signed-off-by: Peter Zijlstra <a.p.zijlstra@xxxxxxxxx> Cc: Linus Torvalds <torvalds@xxxxxxxxxxxxxxxxxxxx> Cc: Andrew Morton <akpm@xxxxxxxxxxxxxxxxxxxx> Cc: Peter Zijlstra <a.p.zijlstra@xxxxxxxxx> Cc: Andrea Arcangeli <aarcange@xxxxxxxxxx> Cc: Rik van Riel <riel@xxxxxxxxxx> [ Wrote changelog and fixed bug. ] Signed-off-by: Ingo Molnar <mingo@xxxxxxxxxx> Signed-off-by: Mel Gorman <mgorman@xxxxxxx>
Reviewed-by: Rik van Riel <riel@xxxxxxxxxx> -- To unsubscribe, send a message with 'unsubscribe linux-mm' in the body to majordomo@xxxxxxxxx. For more info on Linux MM, see: http://www.linux-mm.org/ . Don't email: <a href=mailto:"dont@xxxxxxxxx"> email@xxxxxxxxx </a>