On 1/6/2025 4:10 AM, shiju.jose@xxxxxxxxxx wrote: > +static int ras2_report_cap_error(u32 cap_status) > +{ > + switch (cap_status) { > + case ACPI_RAS2_NOT_VALID: > + case ACPI_RAS2_NOT_SUPPORTED: > + return -EPERM; > + case ACPI_RAS2_BUSY: > + return -EBUSY; > + case ACPI_RAS2_FAILED: > + case ACPI_RAS2_ABORTED: > + case ACPI_RAS2_INVALID_DATA: > + return -EINVAL; > + default: /* 0 or other, Success */ > + return 0; > + } > +} > + > +static int ras2_check_pcc_chan(struct ras2_pcc_subspace *pcc_subspace) > +{ > + struct acpi_ras2_shared_memory __iomem *generic_comm_base = pcc_subspace->pcc_comm_addr; > + ktime_t next_deadline = ktime_add(ktime_get(), pcc_subspace->deadline); > + u32 cap_status; > + u16 status; > + u32 ret; > + > + while (!ktime_after(ktime_get(), next_deadline)) { > + /* > + * As per ACPI spec, the PCC space will be initialized by > + * platform and should have set the command completion bit when > + * PCC can be used by OSPM > + */ > + status = readw_relaxed(&generic_comm_base->status); > + if (status & RAS2_PCC_CMD_ERROR) { > + cap_status = readw_relaxed(&generic_comm_base->set_capabilities_status); > + ret = ras2_report_cap_error(cap_status); There is some new information: The Scrub parameter block intends to get its own Status field, and the set_capabilities_status field is being deprecated. This also causes a revision bump in the spec. See [1] Assuming this change is ratified (not guaranteed, still pending): This change implies that we cannot centrally decode errors, as is done here and now. Instead error decoding must be done after some feature-specific routine calls ras2_send_pcc_cmd. It should be the case that each new feature, moving forward, will likely have their own status. Please see my follow up comment on [PATCH v18 06/19] --- [1] https://github.com/tianocore/edk2/issues/10540 --- > + > + status &= ~RAS2_PCC_CMD_ERROR; > + writew_relaxed(status, &generic_comm_base->status); > + return ret; > + } > + if (status & RAS2_PCC_CMD_COMPLETE) > + return 0; > + /* > + * Reducing the bus traffic in case this loop takes longer than > + * a few retries. > + */ > + msleep(10); > + } > + > + return -EIO; > +} > + > +/** > + * ras2_send_pcc_cmd() - Send RAS2 command via PCC channel > + * @ras2_ctx: pointer to the RAS2 context structure > + * @cmd: command to send > + * > + * Returns: 0 on success, an error otherwise > + */ > +int ras2_send_pcc_cmd(struct ras2_mem_ctx *ras2_ctx, u16 cmd) > +{ > + struct ras2_pcc_subspace *pcc_subspace = ras2_ctx->pcc_subspace; > + struct acpi_ras2_shared_memory *generic_comm_base = pcc_subspace->pcc_comm_addr; > + static ktime_t last_cmd_cmpl_time, last_mpar_reset; > + struct mbox_chan *pcc_channel; > + unsigned int time_delta; > + static int mpar_count; > + int ret; > + > + guard(mutex)(&ras2_pcc_subspace_lock); > + ret = ras2_check_pcc_chan(pcc_subspace); > + if (ret < 0) > + return ret; > + pcc_channel = pcc_subspace->pcc_chan->mchan; > + > + /* > + * Handle the Minimum Request Turnaround Time(MRTT) > + * "The minimum amount of time that OSPM must wait after the completion > + * of a command before issuing the next command, in microseconds" > + */ > + if (pcc_subspace->pcc_mrtt) { > + time_delta = ktime_us_delta(ktime_get(), last_cmd_cmpl_time); > + if (pcc_subspace->pcc_mrtt > time_delta) > + udelay(pcc_subspace->pcc_mrtt - time_delta); > + } > + > + /* > + * Handle the non-zero Maximum Periodic Access Rate(MPAR) > + * "The maximum number of periodic requests that the subspace channel can > + * support, reported in commands per minute. 0 indicates no limitation." > + * > + * This parameter should be ideally zero or large enough so that it can > + * handle maximum number of requests that all the cores in the system can > + * collectively generate. If it is not, we will follow the spec and just > + * not send the request to the platform after hitting the MPAR limit in > + * any 60s window > + */ > + if (pcc_subspace->pcc_mpar) { > + if (mpar_count == 0) { > + time_delta = ktime_ms_delta(ktime_get(), last_mpar_reset); > + if (time_delta < 60 * MSEC_PER_SEC) { > + dev_dbg(ras2_ctx->dev, > + "PCC cmd not sent due to MPAR limit"); > + return -EIO; > + } > + last_mpar_reset = ktime_get(); > + mpar_count = pcc_subspace->pcc_mpar; > + } > + mpar_count--; > + } > + > + /* Write to the shared comm region. */ > + writew_relaxed(cmd, &generic_comm_base->command); > + > + /* Flip CMD COMPLETE bit */ > + writew_relaxed(0, &generic_comm_base->status); > + > + /* Ring doorbell */ > + ret = mbox_send_message(pcc_channel, &cmd); > + if (ret < 0) { > + dev_err(ras2_ctx->dev, > + "Err sending PCC mbox message. cmd:%d, ret:%d\n", > + cmd, ret); > + return ret; > + } > + > + /* > + * If Minimum Request Turnaround Time is non-zero, we need > + * to record the completion time of both READ and WRITE > + * command for proper handling of MRTT, so we need to check > + * for pcc_mrtt in addition to CMD_READ > + */ > + if (cmd == RAS2_PCC_CMD_EXEC || pcc_subspace->pcc_mrtt) { > + ret = ras2_check_pcc_chan(pcc_subspace); > + if (pcc_subspace->pcc_mrtt) > + last_cmd_cmpl_time = ktime_get(); > + } > + > + if (pcc_channel->mbox->txdone_irq) > + mbox_chan_txdone(pcc_channel, ret); > + else > + mbox_client_txdone(pcc_channel, ret); > + > + return ret >= 0 ? 0 : ret; > +} > +EXPORT_SYMBOL_GPL(ras2_send_pcc_cmd); > + > +static int ras2_register_pcc_channel(struct ras2_mem_ctx *ras2_ctx, int pcc_subspace_id) > +{ > + struct ras2_pcc_subspace *pcc_subspace; > + struct pcc_mbox_chan *pcc_chan; > + struct mbox_client *mbox_cl; > + > + if (pcc_subspace_id < 0) > + return -EINVAL; > + > + mutex_lock(&ras2_pcc_subspace_lock); > + list_for_each_entry(pcc_subspace, &ras2_pcc_subspaces, elem) { > + if (pcc_subspace->pcc_subspace_id == pcc_subspace_id) { > + ras2_ctx->pcc_subspace = pcc_subspace; > + pcc_subspace->ref_count++; > + mutex_unlock(&ras2_pcc_subspace_lock); > + return 0; > + } > + } > + mutex_unlock(&ras2_pcc_subspace_lock); > + > + pcc_subspace = kcalloc(1, sizeof(*pcc_subspace), GFP_KERNEL); > + if (!pcc_subspace) > + return -ENOMEM; > + mbox_cl = &pcc_subspace->mbox_client; > + mbox_cl->knows_txdone = true; > + > + pcc_chan = pcc_mbox_request_channel(mbox_cl, pcc_subspace_id); > + if (IS_ERR(pcc_chan)) { > + kfree(pcc_subspace); > + return PTR_ERR(pcc_chan); > + } > + *pcc_subspace = (struct ras2_pcc_subspace) { > + .pcc_subspace_id = pcc_subspace_id, > + .pcc_chan = pcc_chan, > + .pcc_comm_addr = acpi_os_ioremap(pcc_chan->shmem_base_addr, > + pcc_chan->shmem_size), > + .deadline = ns_to_ktime(RAS2_NUM_RETRIES * > + pcc_chan->latency * > + NSEC_PER_USEC), > + .pcc_mrtt = pcc_chan->min_turnaround_time, > + .pcc_mpar = pcc_chan->max_access_rate, > + .mbox_client = { > + .knows_txdone = true, > + }, > + .pcc_channel_acquired = true, > + }; > + mutex_lock(&ras2_pcc_subspace_lock); > + list_add(&pcc_subspace->elem, &ras2_pcc_subspaces); > + pcc_subspace->ref_count++; > + mutex_unlock(&ras2_pcc_subspace_lock); > + ras2_ctx->pcc_subspace = pcc_subspace; > + ras2_ctx->pcc_comm_addr = pcc_subspace->pcc_comm_addr; > + ras2_ctx->dev = pcc_chan->mchan->mbox->dev; > + > + return 0; > +} > + > +static DEFINE_IDA(ras2_ida); > +static void ras2_remove_pcc(struct ras2_mem_ctx *ras2_ctx) > +{ > + struct ras2_pcc_subspace *pcc_subspace = ras2_ctx->pcc_subspace; > + > + guard(mutex)(&ras2_pcc_subspace_lock); > + if (pcc_subspace->ref_count > 0) > + pcc_subspace->ref_count--; > + if (!pcc_subspace->ref_count) { > + list_del(&pcc_subspace->elem); > + pcc_mbox_free_channel(pcc_subspace->pcc_chan); > + kfree(pcc_subspace); > + } > +} > + > +static void ras2_release(struct device *device) > +{ > + struct auxiliary_device *auxdev = container_of(device, struct auxiliary_device, dev); > + struct ras2_mem_ctx *ras2_ctx = container_of(auxdev, struct ras2_mem_ctx, adev); > + > + ida_free(&ras2_ida, auxdev->id); > + ras2_remove_pcc(ras2_ctx); > + kfree(ras2_ctx); > +} > + > +static struct ras2_mem_ctx *ras2_add_aux_device(char *name, int channel) > +{ > + struct ras2_mem_ctx *ras2_ctx; > + int id, ret; > + > + ras2_ctx = kzalloc(sizeof(*ras2_ctx), GFP_KERNEL); > + if (!ras2_ctx) > + return ERR_PTR(-ENOMEM); > + > + mutex_init(&ras2_ctx->lock); > + > + ret = ras2_register_pcc_channel(ras2_ctx, channel); > + if (ret < 0) { > + pr_debug("failed to register pcc channel ret=%d\n", ret); > + goto ctx_free; > + } > + > + id = ida_alloc(&ras2_ida, GFP_KERNEL); > + if (id < 0) { > + ret = id; > + goto pcc_free; > + } > + ras2_ctx->id = id; > + ras2_ctx->adev.id = id; > + ras2_ctx->adev.name = RAS2_MEM_DEV_ID_NAME; > + ras2_ctx->adev.dev.release = ras2_release; > + ras2_ctx->adev.dev.parent = ras2_ctx->dev; > + > + ret = auxiliary_device_init(&ras2_ctx->adev); > + if (ret) > + goto ida_free; > + > + ret = auxiliary_device_add(&ras2_ctx->adev); > + if (ret) { > + auxiliary_device_uninit(&ras2_ctx->adev); > + return ERR_PTR(ret); > + } > + > + return ras2_ctx; > + > +ida_free: > + ida_free(&ras2_ida, id); > +pcc_free: > + ras2_remove_pcc(ras2_ctx); > +ctx_free: > + kfree(ras2_ctx); > + return ERR_PTR(ret); > +} > + > +static int __init ras2_acpi_init(void) > +{ > + struct acpi_table_header *pAcpiTable = NULL; > + struct acpi_ras2_pcc_desc *pcc_desc_list; > + struct acpi_table_ras2 *pRas2Table; > + struct ras2_mem_ctx *ras2_ctx; > + int pcc_subspace_id; > + acpi_size ras2_size; > + acpi_status status; > + u8 count = 0, i; > + int ret = 0; > + > + status = acpi_get_table("RAS2", 0, &pAcpiTable); > + if (ACPI_FAILURE(status) || !pAcpiTable) { > + pr_err("ACPI RAS2 driver failed to initialize, get table failed\n"); > + return -EINVAL; > + } > + > + ras2_size = pAcpiTable->length; > + if (ras2_size < sizeof(struct acpi_table_ras2)) { > + pr_err("ACPI RAS2 table present but broken (too short #1)\n"); > + ret = -EINVAL; > + goto free_ras2_table; > + } > + > + pRas2Table = (struct acpi_table_ras2 *)pAcpiTable; > + if (pRas2Table->num_pcc_descs <= 0) { > + pr_err("ACPI RAS2 table does not contain PCC descriptors\n"); > + ret = -EINVAL; > + goto free_ras2_table; > + } > + > + pcc_desc_list = (struct acpi_ras2_pcc_desc *)(pRas2Table + 1); > + /* Double scan for the case of only one actual controller */ > + pcc_subspace_id = -1; > + count = 0; > + for (i = 0; i < pRas2Table->num_pcc_descs; i++, pcc_desc_list++) { > + if (pcc_desc_list->feature_type != RAS2_FEATURE_TYPE_MEMORY) > + continue; > + if (pcc_subspace_id == -1) { > + pcc_subspace_id = pcc_desc_list->channel_id; > + count++; > + } > + if (pcc_desc_list->channel_id != pcc_subspace_id) > + count++; > + } > + /* > + * Workaround for the client platform with multiple scrub devices > + * but uses single PCC subspace for communication. > + */ > + if (count == 1) { > + /* Add auxiliary device and bind ACPI RAS2 memory driver */ > + ras2_ctx = ras2_add_aux_device(RAS2_MEM_DEV_ID_NAME, pcc_subspace_id); > + if (IS_ERR(ras2_ctx)) { > + ret = PTR_ERR(ras2_ctx); > + goto free_ras2_table; > + } > + acpi_put_table(pAcpiTable); > + return 0; > + } > + > + pcc_desc_list = (struct acpi_ras2_pcc_desc *)(pRas2Table + 1); > + count = 0; > + for (i = 0; i < pRas2Table->num_pcc_descs; i++, pcc_desc_list++) { > + if (pcc_desc_list->feature_type != RAS2_FEATURE_TYPE_MEMORY) > + continue; > + pcc_subspace_id = pcc_desc_list->channel_id; > + /* Add auxiliary device and bind ACPI RAS2 memory driver */ > + ras2_ctx = ras2_add_aux_device(RAS2_MEM_DEV_ID_NAME, pcc_subspace_id); > + if (IS_ERR(ras2_ctx)) { > + ret = PTR_ERR(ras2_ctx); > + goto free_ras2_table; > + } > + } > + > +free_ras2_table: > + acpi_put_table(pAcpiTable); > + return ret; > +} > +late_initcall(ras2_acpi_init) > diff --git a/include/acpi/ras2_acpi.h b/include/acpi/ras2_acpi.h > new file mode 100644 > index 000000000000..7b32407ae2af > --- /dev/null > +++ b/include/acpi/ras2_acpi.h > @@ -0,0 +1,45 @@ > +/* SPDX-License-Identifier: GPL-2.0-only */ > +/* > + * RAS2 ACPI driver header file > + * > + * (C) Copyright 2014, 2015 Hewlett-Packard Enterprises > + * > + * Copyright (c) 2024 HiSilicon Limited > + */ > + > +#ifndef _RAS2_ACPI_H > +#define _RAS2_ACPI_H > + > +#include <linux/acpi.h> > +#include <linux/auxiliary_bus.h> > +#include <linux/mailbox_client.h> > +#include <linux/mutex.h> > +#include <linux/types.h> > + > +#define RAS2_PCC_CMD_COMPLETE BIT(0) > +#define RAS2_PCC_CMD_ERROR BIT(2) > + > +/* RAS2 specific PCC commands */ > +#define RAS2_PCC_CMD_EXEC 0x01 > + > +#define RAS2_AUX_DEV_NAME "ras2" > +#define RAS2_MEM_DEV_ID_NAME "acpi_ras2_mem" > + > +/* Data structure RAS2 table */ > +struct ras2_mem_ctx { > + struct auxiliary_device adev; > + /* Lock to provide mutually exclusive access to PCC channel */ > + struct mutex lock; > + int id; > + u8 instance; > + bool bg; > + u64 base, size; > + u8 scrub_cycle_hrs, min_scrub_cycle, max_scrub_cycle; > + struct device *dev; > + struct device *scrub_dev; > + void *pcc_subspace; > + struct acpi_ras2_shared_memory __iomem *pcc_comm_addr; > +}; Could we break the ras2_mem_ctx structure up a little bit so that when we add a new feature, it will be easier to add a new context? In the following example, we show what it *might* look like if we add another feature (Address Translation). But the ask here, is to split the ras2_mem_ctx structure into two structures: ras2_mem_scrub_ctx and ras2_mem_ctx. struct ras2_mem_address_translation_ctx { struct device *at_dev; ... }; struct ras2_mem_scrub_ctx { struct device *scrub_dev; bool bg; u64 base, size; u8 scrub_cycle_hrs, min_scrub_cycle, max_scrub_cycle; }; /* Data structure RAS2 table */ struct ras2_mem_ctx { struct auxiliary_device adev; /* Lock to provide mutually exclusive access to PCC channel */ struct mutex lock; int id; u8 instance; struct device *dev; void *pcc_subspace; struct acpi_ras2_shared_memory __iomem *pcc_comm_addr; struct ras2_mem_scrub_ctx scrub; struct ras2_mem_address_translation_ctx at; };