Re: [PATCH v12 8/8] task: rust: rework how current is accessed

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



"Alice Ryhl" <aliceryhl@xxxxxxxxxx> writes:

> Introduce a new type called `CurrentTask` that lets you perform various
> operations that are only safe on the `current` task. Use the new type to
> provide a way to access the current mm without incrementing its
> refcount.
>
> With this change, you can write stuff such as
>
> 	let vma = current!().mm().lock_vma_under_rcu(addr);
>
> without incrementing any refcounts.
>
> This replaces the existing abstractions for accessing the current pid
> namespace. With the old approach, every field access to current involves
> both a macro and a unsafe helper function. The new approach simplifies
> that to a single safe function on the `CurrentTask` type. This makes it
> less heavy-weight to add additional current accessors in the future.
>
> That said, creating a `CurrentTask` type like the one in this patch
> requires that we are careful to ensure that it cannot escape the current
> task or otherwise access things after they are freed. To do this, I
> declared that it cannot escape the current "task context" where I
> defined a "task context" as essentially the region in which `current`
> remains unchanged. So e.g., release_task() or begin_new_exec() would
> leave the task context.
>
> If a userspace thread returns to userspace and later makes another
> syscall, then I consider the two syscalls to be different task contexts.
> This allows values stored in that task to be modified between syscalls,
> even if they're guaranteed to be immutable during a syscall.
>
> Ensuring correctness of `CurrentTask` is slightly tricky if we also want
> the ability to have a safe `kthread_use_mm()` implementation in Rust. To
> support that safely, there are two patterns we need to ensure are safe:
>
> 	// Case 1: current!() called inside the scope.
> 	let mm;
> 	kthread_use_mm(some_mm, || {
> 	    mm = current!().mm();
> 	});
> 	drop(some_mm);
> 	mm.do_something(); // UAF
>
> and:
>
> 	// Case 2: current!() called before the scope.
> 	let mm;
> 	let task = current!();
> 	kthread_use_mm(some_mm, || {
> 	    mm = task.mm();
> 	});
> 	drop(some_mm);
> 	mm.do_something(); // UAF
>
> The existing `current!()` abstraction already natively prevents the
> first case: The `&CurrentTask` would be tied to the inner scope, so the
> borrow-checker ensures that no reference derived from it can escape the
> scope.
>
> Fixing the second case is a bit more tricky. The solution is to
> essentially pretend that the contents of the scope execute on an
> different thread, which means that only thread-safe types can cross the
> boundary. Since `CurrentTask` is marked `NotThreadSafe`, attempts to
> move it to another thread will fail, and this includes our fake pretend
> thread boundary.
>
> This has the disadvantage that other types that aren't thread-safe for
> reasons unrelated to `current` also cannot be moved across the
> `kthread_use_mm()` boundary. I consider this an acceptable tradeoff.
>
> Reviewed-by: Boqun Feng <boqun.feng@xxxxxxxxx>
> Signed-off-by: Alice Ryhl <aliceryhl@xxxxxxxxxx>

Reviewed-by: Andreas Hindborg <a.hindborg@xxxxxxxxxx>


Best regards,
Andreas Hindborg






[Index of Archives]     [Linux ARM Kernel]     [Linux ARM]     [Linux Omap]     [Fedora ARM]     [IETF Annouce]     [Bugtraq]     [Linux OMAP]     [Linux MIPS]     [eCos]     [Asterisk Internet PBX]     [Linux API]

  Powered by Linux