This is a preparation patch, both added functions are not used yet. The added __split_unmapped_folio() is able to split a folio with its mapping removed in two manners: 1) uniform split (the existing way), and 2) buddy allocator like split. The added __split_folio_to_order() can split a folio into any lower order. For uniform split, __split_unmapped_folio() calls it once to split the given folio to the new order. For buddy allocator split, __split_unmapped_folio() calls it (folio_order - new_order) times and each time splits the folio containing the given page to one lower order. Signed-off-by: Zi Yan <ziy@xxxxxxxxxx> --- mm/huge_memory.c | 348 ++++++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 347 insertions(+), 1 deletion(-) diff --git a/mm/huge_memory.c b/mm/huge_memory.c index 511b5b23894b..d8e743f81e76 100644 --- a/mm/huge_memory.c +++ b/mm/huge_memory.c @@ -3134,7 +3134,6 @@ static void remap_page(struct folio *folio, unsigned long nr, int flags) static void lru_add_page_tail(struct folio *folio, struct page *tail, struct lruvec *lruvec, struct list_head *list) { - VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); VM_BUG_ON_FOLIO(PageLRU(tail), folio); lockdep_assert_held(&lruvec->lru_lock); @@ -3378,6 +3377,353 @@ bool can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins) caller_pins; } +/* + * It splits @folio into @new_order folios and copies the @folio metadata to + * all the resulting folios. + */ +static int __split_folio_to_order(struct folio *folio, int new_order) +{ + int curr_order = folio_order(folio); + long nr_pages = folio_nr_pages(folio); + long new_nr_pages = 1 << new_order; + long index; + + if (curr_order <= new_order) + return -EINVAL; + + /* + * Skip the first new_nr_pages, since the new folio from them have all + * the flags from the original folio. + */ + for (index = new_nr_pages; index < nr_pages; index += new_nr_pages) { + struct page *head = &folio->page; + struct page *new_head = head + index; + + /* + * Careful: new_folio is not a "real" folio before we cleared PageTail. + * Don't pass it around before clear_compound_head(). + */ + struct folio *new_folio = (struct folio *)new_head; + + VM_BUG_ON_PAGE(atomic_read(&new_head->_mapcount) != -1, new_head); + + /* + * Clone page flags before unfreezing refcount. + * + * After successful get_page_unless_zero() might follow flags change, + * for example lock_page() which set PG_waiters. + * + * Note that for mapped sub-pages of an anonymous THP, + * PG_anon_exclusive has been cleared in unmap_folio() and is stored in + * the migration entry instead from where remap_page() will restore it. + * We can still have PG_anon_exclusive set on effectively unmapped and + * unreferenced sub-pages of an anonymous THP: we can simply drop + * PG_anon_exclusive (-> PG_mappedtodisk) for these here. + */ + new_head->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; + new_head->flags |= (head->flags & + ((1L << PG_referenced) | + (1L << PG_swapbacked) | + (1L << PG_swapcache) | + (1L << PG_mlocked) | + (1L << PG_uptodate) | + (1L << PG_active) | + (1L << PG_workingset) | + (1L << PG_locked) | + (1L << PG_unevictable) | +#ifdef CONFIG_ARCH_USES_PG_ARCH_2 + (1L << PG_arch_2) | +#endif +#ifdef CONFIG_ARCH_USES_PG_ARCH_3 + (1L << PG_arch_3) | +#endif + (1L << PG_dirty) | + LRU_GEN_MASK | LRU_REFS_MASK)); + + /* ->mapping in first and second tail page is replaced by other uses */ + VM_BUG_ON_PAGE(new_nr_pages > 2 && new_head->mapping != TAIL_MAPPING, + new_head); + new_head->mapping = head->mapping; + new_head->index = head->index + index; + + /* + * page->private should not be set in tail pages. Fix up and warn once + * if private is unexpectedly set. + */ + if (unlikely(new_head->private)) { + VM_WARN_ON_ONCE_PAGE(true, new_head); + new_head->private = 0; + } + + if (folio_test_swapcache(folio)) + new_folio->swap.val = folio->swap.val + index; + + /* Page flags must be visible before we make the page non-compound. */ + smp_wmb(); + + /* + * Clear PageTail before unfreezing page refcount. + * + * After successful get_page_unless_zero() might follow put_page() + * which needs correct compound_head(). + */ + clear_compound_head(new_head); + if (new_order) { + prep_compound_page(new_head, new_order); + folio_set_large_rmappable(new_folio); + + folio_set_order(folio, new_order); + } + + if (folio_test_young(folio)) + folio_set_young(new_folio); + if (folio_test_idle(folio)) + folio_set_idle(new_folio); + + folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio)); + } + + if (!new_order) + ClearPageCompound(&folio->page); + + return 0; +} + +/* + * It splits an unmapped @folio to lower order smaller folios in two ways. + * @folio: the to-be-split folio + * @new_order: the smallest order of the after split folios (since buddy + * allocator like split generates folios with orders from @folio's + * order - 1 to new_order). + * @page: in buddy allocator like split, the folio containing @page will be + * split until its order becomes @new_order. + * @list: the after split folios will be added to @list if it is not NULL, + * otherwise to LRU lists. + * @end: the end of the file @folio maps to. -1 if @folio is anonymous memory. + * @xas: xa_state pointing to folio->mapping->i_pages and locked by caller + * @mapping: @folio->mapping + * @uniform_split: if the split is uniform or not (buddy allocator like split) + * + * + * 1. uniform split: the given @folio into multiple @new_order small folios, + * where all small folios have the same order. This is done when + * uniform_split is true. + * 2. buddy allocator like split: the given @folio is split into half and one + * of the half (containing the given page) is split into half until the + * given @page's order becomes @new_order. This is done when uniform_split is + * false. + * + * The high level flow for these two methods are: + * 1. uniform split: a single __split_folio_to_order() is called to split the + * @folio into @new_order, then we traverse all the resulting folios one by + * one in PFN ascending order and perform stats, unfreeze, adding to list, + * and file mapping index operations. + * 2. buddy allocator like split: in general, folio_order - @new_order calls to + * __split_folio_to_order() are called in the for loop to split the @folio + * to one lower order at a time. The resulting small folios are processed + * like what is done during the traversal in 1, except the one containing + * @page, which is split in next for loop. + * + * After splitting, the caller's folio reference will be transferred to the + * folio containing @page. The other folios may be freed if they are not mapped. + * + * In terms of locking, after splitting, + * 1. uniform split leaves @page (or the folio contains it) locked; + * 2. buddy allocator like split leaves @folio locked. + * + * + * For !uniform_split, when -ENOMEM is returned, the original folio might be + * split. The caller needs to check the input folio. + */ +static int __split_unmapped_folio(struct folio *folio, int new_order, + struct page *page, struct list_head *list, pgoff_t end, + struct xa_state *xas, struct address_space *mapping, + bool uniform_split) +{ + struct lruvec *lruvec; + struct address_space *swap_cache = NULL; + struct folio *origin_folio = folio; + struct folio *next_folio = folio_next(folio); + struct folio *new_folio; + struct folio *next; + int order = folio_order(folio); + int split_order; + int start_order = uniform_split ? new_order : order - 1; + int nr_dropped = 0; + int ret = 0; + bool stop_split = false; + + if (folio_test_anon(folio) && folio_test_swapcache(folio)) { + /* a swapcache folio can only be uniformly split to order-0 */ + if (!uniform_split || new_order != 0) + return -EINVAL; + + swap_cache = swap_address_space(folio->swap); + xa_lock(&swap_cache->i_pages); + } + + if (folio_test_anon(folio)) + mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1); + + /* lock lru list/PageCompound, ref frozen by page_ref_freeze */ + lruvec = folio_lruvec_lock(folio); + + /* + * split to new_order one order at a time. For uniform split, + * folio is split to new_order directly. + */ + for (split_order = start_order; + split_order >= new_order && !stop_split; + split_order--) { + int old_order = folio_order(folio); + struct folio *release; + struct folio *end_folio = folio_next(folio); + int status; + + /* order-1 anonymous folio is not supported */ + if (folio_test_anon(folio) && split_order == 1) + continue; + if (uniform_split && split_order != new_order) + continue; + + if (mapping) { + /* + * uniform split has xas_split_alloc() called before + * irq is disabled, since xas_nomem() might not be + * able to allocate enough memory. + */ + if (uniform_split) + xas_split(xas, folio, old_order); + else { + xas_set_order(xas, folio->index, split_order); + xas_split_alloc(xas, folio, folio_order(folio), + GFP_NOWAIT); + if (xas_error(xas)) { + ret = xas_error(xas); + stop_split = true; + goto after_split; + } + xas_split(xas, folio, old_order); + } + } + + /* complete memcg works before add pages to LRU */ + split_page_memcg(&folio->page, old_order, split_order); + split_page_owner(&folio->page, old_order, split_order); + pgalloc_tag_split(folio, old_order, split_order); + + status = __split_folio_to_order(folio, split_order); + + if (status < 0) { + stop_split = true; + ret = -EINVAL; + } + +after_split: + /* + * Iterate through after-split folios and perform related + * operations. But in buddy allocator like split, the folio + * containing the specified page is skipped until its order + * is new_order, since the folio will be worked on in next + * iteration. + */ + for (release = folio, next = folio_next(folio); + release != end_folio; + release = next, next = folio_next(next)) { + /* + * for buddy allocator like split, the folio containing + * page will be split next and should not be released, + * until the folio's order is new_order or stop_split + * is set to true by the above xas_split() failure. + */ + if (release == page_folio(page)) { + folio = release; + if (split_order != new_order && !stop_split) + continue; + } + if (folio_test_anon(release)) { + mod_mthp_stat(folio_order(release), + MTHP_STAT_NR_ANON, 1); + } + + /* + * Unfreeze refcount first. Additional reference from + * page cache. + */ + folio_ref_unfreeze(release, + 1 + ((!folio_test_anon(origin_folio) || + folio_test_swapcache(origin_folio)) ? + folio_nr_pages(release) : 0)); + + if (release != origin_folio) + lru_add_page_tail(origin_folio, &release->page, + lruvec, list); + + /* Some pages can be beyond EOF: drop them from page cache */ + if (release->index >= end) { + if (shmem_mapping(origin_folio->mapping)) + nr_dropped += folio_nr_pages(release); + else if (folio_test_clear_dirty(release)) + folio_account_cleaned(release, + inode_to_wb(origin_folio->mapping->host)); + __filemap_remove_folio(release, NULL); + folio_put(release); + } else if (!folio_test_anon(release)) { + __xa_store(&origin_folio->mapping->i_pages, + release->index, &release->page, 0); + } else if (swap_cache) { + __xa_store(&swap_cache->i_pages, + swap_cache_index(release->swap), + &release->page, 0); + } + } + } + + unlock_page_lruvec(lruvec); + + if (folio_test_anon(origin_folio)) { + if (folio_test_swapcache(origin_folio)) + xa_unlock(&swap_cache->i_pages); + } else + xa_unlock(&mapping->i_pages); + + /* Caller disabled irqs, so they are still disabled here */ + local_irq_enable(); + + if (nr_dropped) + shmem_uncharge(mapping->host, nr_dropped); + + remap_page(origin_folio, 1 << order, + folio_test_anon(origin_folio) ? + RMP_USE_SHARED_ZEROPAGE : 0); + + /* + * At this point, folio should contain the specified page. + * For uniform split, it is left for caller to unlock. + * For buddy allocator like split, the first after-split folio is left + * for caller to unlock. + */ + for (new_folio = origin_folio, next = folio_next(origin_folio); + new_folio != next_folio; + new_folio = next, next = folio_next(next)) { + if (uniform_split && new_folio == folio) + continue; + if (!uniform_split && new_folio == origin_folio) + continue; + + folio_unlock(new_folio); + /* + * Subpages may be freed if there wasn't any mapping + * like if add_to_swap() is running on a lru page that + * had its mapping zapped. And freeing these pages + * requires taking the lru_lock so we do the put_page + * of the tail pages after the split is complete. + */ + free_page_and_swap_cache(&new_folio->page); + } + return ret; +} + /* * This function splits a large folio into smaller folios of order @new_order. * @page can point to any page of the large folio to split. The split operation -- 2.45.2