Re: [PATCH 09/12] x86/mm: enable broadcast TLB invalidation for multi-threaded processes

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 




> On 30 Dec 2024, at 19:53, Rik van Riel <riel@xxxxxxxxxxx> wrote:
> 
> Use broadcast TLB invalidation, using the INVPLGB instruction, on AMD EPYC 3
> and newer CPUs.
> 
> In order to not exhaust PCID space, and keep TLB flushes local for single
> threaded processes, we only hand out broadcast ASIDs to processes active on
> 3 or more CPUs, and gradually increase the threshold as broadcast ASID space
> is depleted.
> 
> Signed-off-by: Rik van Riel <riel@xxxxxxxxxxx>
> ---
> 

[snip]

> --- a/arch/x86/include/asm/mmu_context.h
> +++ b/arch/x86/include/asm/mmu_context.h
> @@ -139,6 +139,8 @@ static inline void mm_reset_untag_mask(struct mm_struct *mm)
> #define enter_lazy_tlb enter_lazy_tlb
> extern void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk);
> 
> +extern void destroy_context_free_broadcast_asid(struct mm_struct *mm);
> +
> /*
>  * Init a new mm.  Used on mm copies, like at fork()
>  * and on mm's that are brand-new, like at execve().
> @@ -161,6 +163,13 @@ static inline int init_new_context(struct task_struct *tsk,
> 		mm->context.execute_only_pkey = -1;
> 	}
> #endif
> +
> +#ifdef CONFIG_CPU_SUP_AMD
> +	INIT_LIST_HEAD(&mm->context.broadcast_asid_list);
> +	mm->context.broadcast_asid = 0;
> +	mm->context.asid_transition = false;
> +#endif
> +
> 	mm_reset_untag_mask(mm);
> 	init_new_context_ldt(mm);
> 	return 0;
> @@ -170,6 +179,9 @@ static inline int init_new_context(struct task_struct *tsk,
> static inline void destroy_context(struct mm_struct *mm)
> {
> 	destroy_context_ldt(mm);
> +#ifdef CONFIG_CPU_SUP_AMD
> +	destroy_context_free_broadcast_asid(mm);
> +#endif

This ifdef’ry is not great. I think it’s better to have entire functions
in ifdef than put ifdef’s within the code. 

> }
> 
> extern void switch_mm(struct mm_struct *prev, struct mm_struct *next,
> diff --git a/arch/x86/include/asm/tlbflush.h b/arch/x86/include/asm/tlbflush.h
> index 20074f17fbcd..5e9956af98d1 100644
> --- a/arch/x86/include/asm/tlbflush.h
> +++ b/arch/x86/include/asm/tlbflush.h
> @@ -65,6 +65,23 @@ static inline void cr4_clear_bits(unsigned long mask)
>  */
> #define TLB_NR_DYN_ASIDS	6
> 
> +#ifdef CONFIG_CPU_SUP_AMD
> +#define is_dyn_asid(asid) (asid) < TLB_NR_DYN_ASIDS
> +#define is_broadcast_asid(asid) (asid) >= TLB_NR_DYN_ASIDS
> +#define in_asid_transition(info) (info->mm && info->mm->context.asid_transition)
> +#define mm_broadcast_asid(mm) (mm->context.broadcast_asid)
> +#else
> +#define is_dyn_asid(asid) true
> +#define is_broadcast_asid(asid) false
> +#define in_asid_transition(info) false
> +#define mm_broadcast_asid(mm) 0

I don’t see a reason why those should be #define instead of inline functions.
Arguably, those are better due to type-checking, etc. For instance is_dyn_asid()
is missing brackets to be safe.

> +
> +inline bool needs_broadcast_asid_reload(struct mm_struct *next, u16 prev_asid)
> +{
> +	return false;
> +}
> +#endif
> +
> struct tlb_context {
> 	u64 ctx_id;
> 	u64 tlb_gen;
> diff --git a/arch/x86/mm/tlb.c b/arch/x86/mm/tlb.c
> index 64f1679c37e1..eb83391385ce 100644
> --- a/arch/x86/mm/tlb.c
> +++ b/arch/x86/mm/tlb.c
> @@ -74,13 +74,15 @@
>  * use different names for each of them:
>  *
>  * ASID  - [0, TLB_NR_DYN_ASIDS-1]
> - *         the canonical identifier for an mm
> + *         the canonical identifier for an mm, dynamically allocated on each CPU
> + *         [TLB_NR_DYN_ASIDS, MAX_ASID_AVAILABLE-1]
> + *         the canonical, global identifier for an mm, identical across all CPUs
>  *
> - * kPCID - [1, TLB_NR_DYN_ASIDS]
> + * kPCID - [1, MAX_ASID_AVAILABLE]
>  *         the value we write into the PCID part of CR3; corresponds to the
>  *         ASID+1, because PCID 0 is special.
>  *
> - * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
> + * uPCID - [2048 + 1, 2048 + MAX_ASID_AVAILABLE]
>  *         for KPTI each mm has two address spaces and thus needs two
>  *         PCID values, but we can still do with a single ASID denomination
>  *         for each mm. Corresponds to kPCID + 2048.
> @@ -225,6 +227,18 @@ static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
> 		return;
> 	}
> 
> +	/*
> +	 * TLB consistency for this ASID is maintained with INVLPGB;
> +	 * TLB flushes happen even while the process isn't running.
> +	 */
> +#ifdef CONFIG_CPU_SUP_AMD
I’m pretty sure IS_ENABLED() can be used here.

> +	if (static_cpu_has(X86_FEATURE_INVLPGB) && mm_broadcast_asid(next)) {
> +		*new_asid = mm_broadcast_asid(next);

Isn’t there a risk of a race changing broadcast_asid between the two reads?

Maybe use READ_ONCE() also since the value is modified asynchronously? 

> +		*need_flush = false;
> +		return;
> +	}
> +#endif
> +
> 	if (this_cpu_read(cpu_tlbstate.invalidate_other))
> 		clear_asid_other();
> 
> @@ -251,6 +265,245 @@ static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
> 	*need_flush = true;
> }
> 
> +#ifdef CONFIG_CPU_SUP_AMD
> +/*
> + * Logic for AMD INVLPGB support.
> + */
> +static DEFINE_RAW_SPINLOCK(broadcast_asid_lock);
> +static u16 last_broadcast_asid = TLB_NR_DYN_ASIDS;
> +static DECLARE_BITMAP(broadcast_asid_used, MAX_ASID_AVAILABLE) = { 0 };
> +static LIST_HEAD(broadcast_asid_list);
> +static int broadcast_asid_available = MAX_ASID_AVAILABLE - TLB_NR_DYN_ASIDS - 1;

Presumably some of these data structures are shared, and some are accessed
frequently together. Wouldn’t it make more sense to put them inside a struct(s)
and make it cacheline aligned?

> +
> +static void reset_broadcast_asid_space(void)
> +{
> +	mm_context_t *context;
> +
> +	lockdep_assert_held(&broadcast_asid_lock);
> +
> +	/*
> +	 * Flush once when we wrap around the ASID space, so we won't need
> +	 * to flush every time we allocate an ASID for boradcast flushing.
> +	 */
> +	invlpgb_flush_all_nonglobals();
> +	tlbsync();
> +
> +	/*
> +	 * Leave the currently used broadcast ASIDs set in the bitmap, since
> +	 * those cannot be reused before the next wraparound and flush..
> +	 */
> +	bitmap_clear(broadcast_asid_used, 0, MAX_ASID_AVAILABLE);
> +	list_for_each_entry(context, &broadcast_asid_list, broadcast_asid_list)
> +		__set_bit(context->broadcast_asid, broadcast_asid_used);
> +
> +	last_broadcast_asid = TLB_NR_DYN_ASIDS;
> +}
> +
> +static u16 get_broadcast_asid(void)
> +{
> +	lockdep_assert_held(&broadcast_asid_lock);
> +
> +	do {
> +		u16 start = last_broadcast_asid;
> +		u16 asid = find_next_zero_bit(broadcast_asid_used, MAX_ASID_AVAILABLE, start);
> +
> +		if (asid >= MAX_ASID_AVAILABLE) {
> +			reset_broadcast_asid_space();
> +			continue;
> +		}
> +
> +		/* Try claiming this broadcast ASID. */
> +		if (!test_and_set_bit(asid, broadcast_asid_used)) {

IIUC, broadcast_asid_used is always protected with broadcast_asid_lock.
So why test_and_set_bit  ?

> +			last_broadcast_asid = asid;
> +			return asid;
> +		}
> +	} while (1);
> +}
> +
> +/*
> + * Returns true if the mm is transitioning from a CPU-local ASID to a broadcast
> + * (INVLPGB) ASID, or the other way around.
> + */
> +static bool needs_broadcast_asid_reload(struct mm_struct *next, u16 prev_asid)
> +{
> +	u16 broadcast_asid = mm_broadcast_asid(next);
> +
> +	if (broadcast_asid && prev_asid != broadcast_asid)
> +		return true;
> +
> +	if (!broadcast_asid && is_broadcast_asid(prev_asid))
> +		return true;
> +
> +	return false;
> +}
> +
> +void destroy_context_free_broadcast_asid(struct mm_struct *mm)
> +{
> +	if (!mm->context.broadcast_asid)

mm_broadcast_asid()?

> +		return;
> +
> +	guard(raw_spinlock_irqsave)(&broadcast_asid_lock);
> +	mm->context.broadcast_asid = 0;
> +	list_del(&mm->context.broadcast_asid_list);
> +	broadcast_asid_available++;
> +}
> +
> +static bool mm_active_cpus_exceeds(struct mm_struct *mm, int threshold)
> +{
> +	int count = 0;
> +	int cpu;
> +
> +	if (cpumask_weight(mm_cpumask(mm)) <= threshold)
> +		return false;
> +
> +	for_each_cpu(cpu, mm_cpumask(mm)) {
> +		/* Skip the CPUs that aren't really running this process. */
> +		if (per_cpu(cpu_tlbstate.loaded_mm, cpu) != mm)
> +			continue;
> +
> +		if (per_cpu(cpu_tlbstate_shared.is_lazy, cpu))
> +			continue;
> +
> +		if (++count > threshold)
> +			return true;
> +	}
> +	return false;
> +}
> +
> +/*
> + * Assign a broadcast ASID to the current process, protecting against
> + * races between multiple threads in the process.
> + */
> +static void use_broadcast_asid(struct mm_struct *mm)
> +{
> +	guard(raw_spinlock_irqsave)(&broadcast_asid_lock);
> +
> +	/* This process is already using broadcast TLB invalidation. */
> +	if (mm->context.broadcast_asid)
> +		return;
> +
> +	mm->context.broadcast_asid = get_broadcast_asid();

This is read without the lock, so do you want WRITE_ONCE() here? 

> +	mm->context.asid_transition = true;

And what about asid_transition? Presumably also need WRITE_ONCE(). But more
importantly than this theoretical compiler optimization, is there some assumed
ordering with setting broadcast_asid?

> +	list_add(&mm->context.broadcast_asid_list, &broadcast_asid_list);
> +	broadcast_asid_available--;
> +}
> +
> +/*
> + * Figure out whether to assign a broadcast (global) ASID to a process.
> + * We vary the threshold by how empty or full broadcast ASID space is.
> + * 1/4 full: >= 4 active threads
> + * 1/2 full: >= 8 active threads
> + * 3/4 full: >= 16 active threads
> + * 7/8 full: >= 32 active threads
> + * etc
> + *
> + * This way we should never exhaust the broadcast ASID space, even on very
> + * large systems, and the processes with the largest number of active
> + * threads should be able to use broadcast TLB invalidation.
> + */
> +#define HALFFULL_THRESHOLD 8
> +static bool meets_broadcast_asid_threshold(struct mm_struct *mm)
> +{
> +	int avail = broadcast_asid_available;
> +	int threshold = HALFFULL_THRESHOLD;
> +
> +	if (!avail)
> +		return false;
> +
> +	if (avail > MAX_ASID_AVAILABLE * 3 / 4) {
> +		threshold = HALFFULL_THRESHOLD / 4;
> +	} else if (avail > MAX_ASID_AVAILABLE / 2) {
> +		threshold = HALFFULL_THRESHOLD / 2;
> +	} else if (avail < MAX_ASID_AVAILABLE / 3) {
> +		do {
> +			avail *= 2;
> +			threshold *= 2;
> +		} while ((avail + threshold) < MAX_ASID_AVAILABLE / 2);
> +	}
> +
> +	return mm_active_cpus_exceeds(mm, threshold);
> +}
> +
> +static void count_tlb_flush(struct mm_struct *mm)
> +{
> +	if (!static_cpu_has(X86_FEATURE_INVLPGB))
> +		return;
> +
> +	/* Check every once in a while. */
> +	if ((current->pid & 0x1f) != (jiffies & 0x1f))
> +		return;
> +
> +	if (meets_broadcast_asid_threshold(mm))
> +		use_broadcast_asid(mm);
> +}

I don’t think count_tlb_flush() is a name that reflects what this function
does.

> +
> +static void finish_asid_transition(struct flush_tlb_info *info)
> +{
> +	struct mm_struct *mm = info->mm;
> +	int bc_asid = mm_broadcast_asid(mm);
> +	int cpu;
> +
> +	if (!mm->context.asid_transition)

is_asid_transition()?


> +		return;
> +
> +	for_each_cpu(cpu, mm_cpumask(mm)) {
> +		if (READ_ONCE(per_cpu(cpu_tlbstate.loaded_mm, cpu)) != mm)
> +			continue;
> +
> +		/*
> +		 * If at least one CPU is not using the broadcast ASID yet,
> +		 * send a TLB flush IPI. The IPI should cause stragglers
> +		 * to transition soon.
> +		 */
> +		if (per_cpu(cpu_tlbstate.loaded_mm_asid, cpu) != bc_asid) {
> +			flush_tlb_multi(mm_cpumask(info->mm), info);
> +			return;
> +		}
> +	}
> +
> +	/* All the CPUs running this process are using the broadcast ASID. */
> +	mm->context.asid_transition = 0;
> +}
> +
> +static void broadcast_tlb_flush(struct flush_tlb_info *info)
> +{
> +	bool pmd = info->stride_shift == PMD_SHIFT;
> +	unsigned long maxnr = invlpgb_count_max;
> +	unsigned long asid = info->mm->context.broadcast_asid;
> +	unsigned long addr = info->start;
> +	unsigned long nr;
> +
> +	/* Flushing multiple pages at once is not supported with 1GB pages. */
> +	if (info->stride_shift > PMD_SHIFT)
> +		maxnr = 1;
> +
> +	if (info->end == TLB_FLUSH_ALL) {
> +		invlpgb_flush_single_pcid(kern_pcid(asid));
> +		/* Do any CPUs supporting INVLPGB need PTI? */
> +		if (static_cpu_has(X86_FEATURE_PTI))
> +			invlpgb_flush_single_pcid(user_pcid(asid));
> +	} else do {

I couldn’t find any use of “else do” in the kernel. Might it be confusing?

> +		/*
> +		 * Calculate how many pages can be flushed at once; if the
> +		 * remainder of the range is less than one page, flush one.
> +		 */
> +		nr = min(maxnr, (info->end - addr) >> info->stride_shift);
> +		nr = max(nr, 1);
> +
> +		invlpgb_flush_user_nr(kern_pcid(asid), addr, nr, pmd);
> +		/* Do any CPUs supporting INVLPGB need PTI? */
> +		if (static_cpu_has(X86_FEATURE_PTI))
> +			invlpgb_flush_user_nr(user_pcid(asid), addr, nr, pmd);
> +		addr += nr << info->stride_shift;
> +	} while (addr < info->end);
> +
> +	finish_asid_transition(info);
> +
> +	/* Wait for the INVLPGBs kicked off above to finish. */
> +	tlbsync();
> +}
> +#endif /* CONFIG_CPU_SUP_AMD */
> +
> /*
>  * Given an ASID, flush the corresponding user ASID.  We can delay this
>  * until the next time we switch to it.
> @@ -556,8 +809,9 @@ void switch_mm_irqs_off(struct mm_struct *unused, struct mm_struct *next,
> 	 */
> 	if (prev == next) {
> 		/* Not actually switching mm's */
> -		VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
> -			   next->context.ctx_id);
> +		if (is_dyn_asid(prev_asid))
> +			VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
> +				   next->context.ctx_id);

Why not to add the condition into the VM_WARN_ON and avoid the nesting?

> 
> 		/*
> 		 * If this races with another thread that enables lam, 'new_lam'
> @@ -573,6 +827,23 @@ void switch_mm_irqs_off(struct mm_struct *unused, struct mm_struct *next,
> 				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
> 			cpumask_set_cpu(cpu, mm_cpumask(next));
> 
> +		/*
> +		 * Check if the current mm is transitioning to a new ASID.
> +		 */
> +		if (needs_broadcast_asid_reload(next, prev_asid)) {
> +			next_tlb_gen = atomic64_read(&next->context.tlb_gen);
> +
> +			choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
> +			goto reload_tlb;
> +		}
> +
> +		/*
> +		 * Broadcast TLB invalidation keeps this PCID up to date
> +		 * all the time.
> +		 */
> +		if (is_broadcast_asid(prev_asid))
> +			return;
> +
> 		/*
> 		 * If the CPU is not in lazy TLB mode, we are just switching
> 		 * from one thread in a process to another thread in the same
> @@ -626,8 +897,10 @@ void switch_mm_irqs_off(struct mm_struct *unused, struct mm_struct *next,
> 		barrier();
> 	}
> 
> +reload_tlb:
> 	new_lam = mm_lam_cr3_mask(next);
> 	if (need_flush) {
> +		VM_BUG_ON(is_broadcast_asid(new_asid));
> 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
> 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
> 		load_new_mm_cr3(next->pgd, new_asid, new_lam, true);
> @@ -746,7 +1019,7 @@ static void flush_tlb_func(void *info)
> 	const struct flush_tlb_info *f = info;
> 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
> 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
> -	u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
> +	u64 local_tlb_gen;
> 	bool local = smp_processor_id() == f->initiating_cpu;
> 	unsigned long nr_invalidate = 0;
> 	u64 mm_tlb_gen;
> @@ -769,6 +1042,16 @@ static void flush_tlb_func(void *info)
> 	if (unlikely(loaded_mm == &init_mm))
> 		return;
> 
> +	/* Reload the ASID if transitioning into or out of a broadcast ASID */
> +	if (needs_broadcast_asid_reload(loaded_mm, loaded_mm_asid)) {
> +		switch_mm_irqs_off(NULL, loaded_mm, NULL);
> +		loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
> +	}
> +
> +	/* Broadcast ASIDs are always kept up to date with INVLPGB. */
> +	if (is_broadcast_asid(loaded_mm_asid))
> +		return;
> +
> 	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
> 		   loaded_mm->context.ctx_id);
> 
> @@ -786,6 +1069,8 @@ static void flush_tlb_func(void *info)
> 		return;
> 	}
> 
> +	local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
> +
> 	if (unlikely(f->new_tlb_gen != TLB_GENERATION_INVALID &&
> 		     f->new_tlb_gen <= local_tlb_gen)) {
> 		/*
> @@ -953,7 +1238,7 @@ STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask,
> 	 * up on the new contents of what used to be page tables, while
> 	 * doing a speculative memory access.
> 	 */
> -	if (info->freed_tables)
> +	if (info->freed_tables || in_asid_transition(info))
> 		on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true);
> 	else
> 		on_each_cpu_cond_mask(should_flush_tlb, flush_tlb_func,
> @@ -1026,14 +1311,18 @@ void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
> 				bool freed_tables)
> {
> 	struct flush_tlb_info *info;
> +	unsigned long threshold = tlb_single_page_flush_ceiling;
> 	u64 new_tlb_gen;
> 	int cpu;
> 
> +	if (static_cpu_has(X86_FEATURE_INVLPGB))
> +		threshold *= invlpgb_count_max;

I know it’s not really impacting performance, but it is hard for me to see
such calculations happening unnecessarily every time...






[Index of Archives]     [Linux ARM Kernel]     [Linux ARM]     [Linux Omap]     [Fedora ARM]     [IETF Annouce]     [Bugtraq]     [Linux OMAP]     [Linux MIPS]     [eCos]     [Asterisk Internet PBX]     [Linux API]

  Powered by Linux