Back when per-vma locks were introduces, vm_lock was moved out of vm_area_struct in [1] because of the performance regression caused by false cacheline sharing. Recent investigation [2] revealed that the regressions is limited to a rather old Broadwell microarchitecture and even there it can be mitigated by disabling adjacent cacheline prefetching, see [3]. This patchset moves vm_lock back into vm_area_struct, aligning it at the cacheline boundary and changing the cache to be cache-aligned as well. This causes VMA memory consumption to grow from 160 (vm_area_struct) + 40 (vm_lock) bytes to 256 bytes: slabinfo before: <name> ... <objsize> <objperslab> <pagesperslab> : ... vma_lock ... 40 102 1 : ... vm_area_struct ... 160 51 2 : ... slabinfo after moving vm_lock: <name> ... <objsize> <objperslab> <pagesperslab> : ... vm_area_struct ... 256 32 2 : ... Aggregate VMA memory consumption per 1000 VMAs grows from 50 to 64 pages, which is 5.5MB per 100000 VMAs. To minimize memory overhead, vm_lock implementation is changed from using rw_semaphore (40 bytes) to an atomic (8 bytes) and several vm_area_struct members are moved into the last cacheline, resulting in a less fragmented structure: struct vm_area_struct { union { struct { long unsigned int vm_start; /* 0 8 */ long unsigned int vm_end; /* 8 8 */ }; /* 0 16 */ struct callback_head vm_rcu ; /* 0 16 */ } __attribute__((__aligned__(8))); /* 0 16 */ struct mm_struct * vm_mm; /* 16 8 */ pgprot_t vm_page_prot; /* 24 8 */ union { const vm_flags_t vm_flags; /* 32 8 */ vm_flags_t __vm_flags; /* 32 8 */ }; /* 32 8 */ bool detached; /* 40 1 */ /* XXX 3 bytes hole, try to pack */ unsigned int vm_lock_seq; /* 44 4 */ struct list_head anon_vma_chain; /* 48 16 */ /* --- cacheline 1 boundary (64 bytes) --- */ struct anon_vma * anon_vma; /* 64 8 */ const struct vm_operations_struct * vm_ops; /* 72 8 */ long unsigned int vm_pgoff; /* 80 8 */ struct file * vm_file; /* 88 8 */ void * vm_private_data; /* 96 8 */ atomic_long_t swap_readahead_info; /* 104 8 */ struct mempolicy * vm_policy; /* 112 8 */ /* XXX 8 bytes hole, try to pack */ /* --- cacheline 2 boundary (128 bytes) --- */ struct vma_lock vm_lock (__aligned__(64)); /* 128 4 */ /* XXX 4 bytes hole, try to pack */ struct { struct rb_node rb (__aligned__(8)); /* 136 24 */ long unsigned int rb_subtree_last; /* 160 8 */ } __attribute__((__aligned__(8))) shared; /* 136 32 */ struct vm_userfaultfd_ctx vm_userfaultfd_ctx; /* 168 0 */ /* size: 192, cachelines: 3, members: 17 */ /* sum members: 153, holes: 3, sum holes: 15 */ /* padding: 24 */ /* forced alignments: 3, forced holes: 2, sum forced holes: 12 */ } __attribute__((__aligned__(64))); Memory consumption per 1000 VMAs becomes 48 pages, saving 2 pages compared to the 50 pages in the baseline: slabinfo after vm_area_struct changes: <name> ... <objsize> <objperslab> <pagesperslab> : ... vm_area_struct ... 192 42 2 : ... Performance measurements using pft test on x86 do not show considerable difference, on Pixel 6 running Android it results in 3-5% improvement in faults per second. [1] https://lore.kernel.org/all/20230227173632.3292573-34-surenb@xxxxxxxxxx/ [2] https://lore.kernel.org/all/ZsQyI%2F087V34JoIt@xsang-OptiPlex-9020/ [3] https://lore.kernel.org/all/CAJuCfpEisU8Lfe96AYJDZ+OM4NoPmnw9bP53cT_kbfP_pR+-2g@xxxxxxxxxxxxxx/ Suren Baghdasaryan (4): mm: introduce vma_start_read_locked{_nested} helpers mm: move per-vma lock into vm_area_struct mm: replace rw_semaphore with atomic_t in vma_lock mm: move lesser used vma_area_struct members into the last cacheline include/linux/mm.h | 163 +++++++++++++++++++++++++++++++++++--- include/linux/mm_types.h | 59 +++++++++----- include/linux/mmap_lock.h | 3 + kernel/fork.c | 50 ++---------- mm/init-mm.c | 2 + mm/userfaultfd.c | 14 ++-- 6 files changed, 205 insertions(+), 86 deletions(-) base-commit: 931086f2a88086319afb57cd3925607e8cda0a9f -- 2.47.0.277.g8800431eea-goog