On Fri, Nov 01, 2024 at 11:03:52AM -0400, Zi Yan wrote: > This is a preparation patch, both added functions are not used yet. > In subject: s/yet/not yet/ > The added __folio_split_without_mapping() is able to split a folio with > its mapping removed in two manners: 1) uniform split (the existing way), > and 2) buddy allocator like split. > > The added __split_folio_to_order() can split a folio into any lower order. > For uniform split, __folio_split_without_mapping() calls it once to split > the given folio to the new order. For buddy allocator split, > __folio_split_without_mapping() calls it (folio_order - new_order) times > and each time splits the folio containing the given page to one lower > order. > > Signed-off-by: Zi Yan <ziy@xxxxxxxxxx> > --- > mm/huge_memory.c | 328 ++++++++++++++++++++++++++++++++++++++++++++++- > 1 file changed, 327 insertions(+), 1 deletion(-) > > diff --git a/mm/huge_memory.c b/mm/huge_memory.c > index f92068864469..f7649043ddb7 100644 > --- a/mm/huge_memory.c > +++ b/mm/huge_memory.c > @@ -3135,7 +3135,6 @@ static void remap_page(struct folio *folio, unsigned long nr, int flags) > static void lru_add_page_tail(struct folio *folio, struct page *tail, > struct lruvec *lruvec, struct list_head *list) > { > - VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); > VM_BUG_ON_FOLIO(PageLRU(tail), folio); > lockdep_assert_held(&lruvec->lru_lock); > > @@ -3379,6 +3378,333 @@ bool can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins) > caller_pins; > } > > +static long page_in_folio_offset(struct page *page, struct folio *folio) > +{ > + long nr_pages = folio_nr_pages(folio); > + unsigned long pages_pfn = page_to_pfn(page); > + unsigned long folios_pfn = folio_pfn(folio); > + > + if (pages_pfn >= folios_pfn && pages_pfn < (folios_pfn + nr_pages)) > + return pages_pfn - folios_pfn; > + > + return -EINVAL; > +} > + > +/* > + * It splits @folio into @new_order folios and copies the @folio metadata to > + * all the resulting folios. > + */ > +static int __split_folio_to_order(struct folio *folio, int new_order) > +{ > + int curr_order = folio_order(folio); > + long nr_pages = folio_nr_pages(folio); > + long new_nr_pages = 1 << new_order; > + long index; > + > + if (curr_order <= new_order) > + return -EINVAL; > + > + for (index = new_nr_pages; index < nr_pages; index += new_nr_pages) { Hm. It is not clear why you skip the first new_nr_pages range. It worth a comment. > + struct page *head = &folio->page; > + struct page *second_head = head + index; I am not sure about 'second_head' name. Why it is better than page_tail? > + > + /* > + * Careful: new_folio is not a "real" folio before we cleared PageTail. > + * Don't pass it around before clear_compound_head(). > + */ > + struct folio *new_folio = (struct folio *)second_head; > + > + VM_BUG_ON_PAGE(atomic_read(&second_head->_mapcount) != -1, second_head); > + > + /* > + * Clone page flags before unfreezing refcount. > + * > + * After successful get_page_unless_zero() might follow flags change, > + * for example lock_page() which set PG_waiters. > + * > + * Note that for mapped sub-pages of an anonymous THP, > + * PG_anon_exclusive has been cleared in unmap_folio() and is stored in > + * the migration entry instead from where remap_page() will restore it. > + * We can still have PG_anon_exclusive set on effectively unmapped and > + * unreferenced sub-pages of an anonymous THP: we can simply drop > + * PG_anon_exclusive (-> PG_mappedtodisk) for these here. > + */ > + second_head->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; > + second_head->flags |= (head->flags & > + ((1L << PG_referenced) | > + (1L << PG_swapbacked) | > + (1L << PG_swapcache) | > + (1L << PG_mlocked) | > + (1L << PG_uptodate) | > + (1L << PG_active) | > + (1L << PG_workingset) | > + (1L << PG_locked) | > + (1L << PG_unevictable) | > +#ifdef CONFIG_ARCH_USES_PG_ARCH_2 > + (1L << PG_arch_2) | > +#endif > +#ifdef CONFIG_ARCH_USES_PG_ARCH_3 > + (1L << PG_arch_3) | > +#endif > + (1L << PG_dirty) | > + LRU_GEN_MASK | LRU_REFS_MASK)); > + > + /* ->mapping in first and second tail page is replaced by other uses */ > + VM_BUG_ON_PAGE(new_nr_pages > 2 && second_head->mapping != TAIL_MAPPING, > + second_head); > + second_head->mapping = head->mapping; > + second_head->index = head->index + index; > + > + /* > + * page->private should not be set in tail pages. Fix up and warn once > + * if private is unexpectedly set. > + */ > + if (unlikely(second_head->private)) { > + VM_WARN_ON_ONCE_PAGE(true, second_head); > + second_head->private = 0; > + } New line. > + if (folio_test_swapcache(folio)) > + new_folio->swap.val = folio->swap.val + index; > + > + /* Page flags must be visible before we make the page non-compound. */ > + smp_wmb(); > + > + /* > + * Clear PageTail before unfreezing page refcount. > + * > + * After successful get_page_unless_zero() might follow put_page() > + * which needs correct compound_head(). > + */ > + clear_compound_head(second_head); > + if (new_order) { > + prep_compound_page(second_head, new_order); > + folio_set_large_rmappable(new_folio); > + > + folio_set_order(folio, new_order); > + } else { > + if (PageHead(head)) > + ClearPageCompound(head); Huh? You only have to test for PageHead() because it is inside the loop. It has to be done after loop is done. > + } > + > + if (folio_test_young(folio)) > + folio_set_young(new_folio); > + if (folio_test_idle(folio)) > + folio_set_idle(new_folio); > + > + folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio)); > + } > + > + return 0; > +} > + > +#define for_each_folio_until_end_safe(iter, iter2, start, end) \ > + for (iter = start, iter2 = folio_next(start); \ > + iter != end; \ > + iter = iter2, iter2 = folio_next(iter2)) I am not sure if hiding it inside the macro helps reading the code. > + > +/* > + * It splits a @folio (without mapping) to lower order smaller folios in two > + * ways. What do you mean by "without mapping". I initially thought that ->mapping is NULL, but it is obviously not true. Do you mean unmapped? > + * 1. uniform split: the given @folio into multiple @new_order small folios, > + * where all small folios have the same order. This is done when > + * uniform_split is true. > + * 2. buddy allocator like split: the given @folio is split into half and one > + * of the half (containing the given page) is split into half until the > + * given @page's order becomes @new_order. This is done when uniform_split is > + * false. > + * > + * The high level flow for these two methods are: > + * 1. uniform split: a single __split_folio_to_order() is called to split the > + * @folio into @new_order, then we traverse all the resulting folios one by > + * one in PFN ascending order and perform stats, unfreeze, adding to list, > + * and file mapping index operations. > + * 2. buddy allocator like split: in general, folio_order - @new_order calls to > + * __split_folio_to_order() are called in the for loop to split the @folio > + * to one lower order at a time. The resulting small folios are processed > + * like what is done during the traversal in 1, except the one containing > + * @page, which is split in next for loop. > + * > + * After splitting, the caller's folio reference will be transferred to the > + * folio containing @page. The other folios may be freed if they are not mapped. > + * > + * In terms of locking, after splitting, > + * 1. uniform split leaves @page (or the folio contains it) locked; > + * 2. buddy allocator like split leaves @folio locked. > + * > + * If @list is null, tail pages will be added to LRU list, otherwise, to @list. > + * > + * For !uniform_split, when -ENOMEM is returned, the original folio might be > + * split. The caller needs to check the input folio. > + */ > +static int __folio_split_without_mapping(struct folio *folio, int new_order, > + struct page *page, struct list_head *list, pgoff_t end, > + struct xa_state *xas, struct address_space *mapping, > + bool uniform_split) It is not clear what state xas has to be on call. > +{ > + struct lruvec *lruvec; > + struct address_space *swap_cache = NULL; > + struct folio *origin_folio = folio; > + struct folio *next_folio = folio_next(folio); > + struct folio *new_folio; > + struct folio *next; > + int order = folio_order(folio); > + int split_order = order - 1; > + int nr_dropped = 0; > + int ret = 0; > + > + if (folio_test_anon(folio) && folio_test_swapcache(folio)) { > + if (!uniform_split) > + return -EINVAL; Why this limitation? > + swap_cache = swap_address_space(folio->swap); > + xa_lock(&swap_cache->i_pages); > + } > + > + if (folio_test_anon(folio)) > + mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1); > + > + /* lock lru list/PageCompound, ref frozen by page_ref_freeze */ > + lruvec = folio_lruvec_lock(folio); > + > + /* > + * split to new_order one order at a time. For uniform split, > + * intermediate orders are skipped > + */ > + for (split_order = order - 1; split_order >= new_order; split_order--) { > + int old_order = folio_order(folio); > + struct folio *release; > + struct folio *end_folio = folio_next(folio); > + int status; > + bool stop_split = false; > + > + if (folio_test_anon(folio) && split_order == 1) Comment is missing. > + continue; > + if (uniform_split && split_order != new_order) > + continue; What the point in the loop for uniform_split? > + > + if (mapping) { > + /* > + * uniform split has xas_split_alloc() called before > + * irq is disabled, since xas_nomem() might not be > + * able to allocate enough memory. > + */ > + if (uniform_split) > + xas_split(xas, folio, old_order); > + else { > + xas_set_order(xas, folio->index, split_order); > + xas_set_err(xas, -ENOMEM); > + if (xas_nomem(xas, 0)) 0 gfp? > + xas_split(xas, folio, old_order); > + else { > + stop_split = true; > + ret = -ENOMEM; > + goto after_split; > + } > + } > + } > + > + split_page_memcg(&folio->page, old_order, split_order); __split_huge_page() has a comment for split_page_memcg(). Do we want to keep it? Is it safe to call it under lruvec lock? > + split_page_owner(&folio->page, old_order, split_order); > + pgalloc_tag_split(folio, old_order, split_order); > + > + status = __split_folio_to_order(folio, split_order); > + > + if (status < 0) > + return status; > + > +after_split: > + /* > + * Iterate through after-split folios and perform related > + * operations. But in buddy allocator like split, the folio > + * containing the specified page is skipped until its order > + * is new_order, since the folio will be worked on in next > + * iteration. > + */ > + for_each_folio_until_end_safe(release, next, folio, end_folio) { > + if (page_in_folio_offset(page, release) >= 0) { > + folio = release; > + if (split_order != new_order && !stop_split) > + continue; I don't understand this condition. > + } > + if (folio_test_anon(release)) > + mod_mthp_stat(folio_order(release), > + MTHP_STAT_NR_ANON, 1); Add { } around the block. > + > + /* > + * Unfreeze refcount first. Additional reference from > + * page cache. > + */ > + folio_ref_unfreeze(release, > + 1 + ((!folio_test_anon(origin_folio) || > + folio_test_swapcache(origin_folio)) ? > + folio_nr_pages(release) : 0)); > + > + if (release != origin_folio) > + lru_add_page_tail(origin_folio, &release->page, > + lruvec, list); > + > + /* Some pages can be beyond EOF: drop them from page cache */ > + if (release->index >= end) { > + if (shmem_mapping(origin_folio->mapping)) > + nr_dropped++; > + else if (folio_test_clear_dirty(release)) > + folio_account_cleaned(release, > + inode_to_wb(origin_folio->mapping->host)); > + __filemap_remove_folio(release, NULL); > + folio_put(release); > + } else if (!folio_test_anon(release)) { > + __xa_store(&origin_folio->mapping->i_pages, > + release->index, &release->page, 0); > + } else if (swap_cache) { > + __xa_store(&swap_cache->i_pages, > + swap_cache_index(release->swap), > + &release->page, 0); > + } > + } > + xas_destroy(xas); > + } > + > + unlock_page_lruvec(lruvec); > + > + if (folio_test_anon(origin_folio)) { > + if (folio_test_swapcache(origin_folio)) > + xa_unlock(&swap_cache->i_pages); > + } else > + xa_unlock(&mapping->i_pages); > + > + /* Caller disabled irqs, so they are still disabled here */ > + local_irq_enable(); > + > + if (nr_dropped) > + shmem_uncharge(mapping->host, nr_dropped); > + > + remap_page(origin_folio, 1 << order, > + folio_test_anon(origin_folio) ? > + RMP_USE_SHARED_ZEROPAGE : 0); > + > + /* > + * At this point, folio should contain the specified page, so that it > + * will be left to the caller to unlock it. > + */ > + for_each_folio_until_end_safe(new_folio, next, origin_folio, next_folio) { > + if (uniform_split && new_folio == folio) > + continue; > + if (!uniform_split && new_folio == origin_folio) > + continue; > + > + folio_unlock(new_folio); > + /* > + * Subpages may be freed if there wasn't any mapping > + * like if add_to_swap() is running on a lru page that > + * had its mapping zapped. And freeing these pages > + * requires taking the lru_lock so we do the put_page > + * of the tail pages after the split is complete. > + */ > + free_page_and_swap_cache(&new_folio->page); > + } > + return ret; > +} > + > /* > * This function splits a large folio into smaller folios of order @new_order. > * @page can point to any page of the large folio to split. The split operation > -- > 2.45.2 > -- Kiryl Shutsemau / Kirill A. Shutemov