[PATCH v1 1/3] mm/huge_memory: buddy allocator like folio_split()

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



folio_split() splits a large folio in the same way as buddy allocator
splits a large free page for allocation. The purpose is to minimize the
number of folios after the split. For example, if user wants to free the
3rd subpage in a order-9 folio, folio_split() will split the order-9 folio
as:
O-0, O-0, O-0, O-0, O-2, O-3, O-4, O-5, O-6, O-7, O-8 if it is anon
O-1,      O-0, O-0, O-2, O-3, O-4, O-5, O-6, O-7, O-9 if it is pagecache
Since anon folio does not support order-1 yet.

It generates fewer folios than existing page split approach, which splits
the order-9 to 512 order-0 folios.

To minimize code duplication, __split_huge_page() and
__split_huge_page_tail() are replaced by __folio_split_without_mapping()
and __split_folio_to_order() respectively.

Signed-off-by: Zi Yan <ziy@xxxxxxxxxx>
---
 mm/huge_memory.c | 604 +++++++++++++++++++++++++++++------------------
 1 file changed, 372 insertions(+), 232 deletions(-)

diff --git a/mm/huge_memory.c b/mm/huge_memory.c
index 832ca761b4c3..0224925e4c3c 100644
--- a/mm/huge_memory.c
+++ b/mm/huge_memory.c
@@ -3135,7 +3135,6 @@ static void remap_page(struct folio *folio, unsigned long nr, int flags)
 static void lru_add_page_tail(struct folio *folio, struct page *tail,
 		struct lruvec *lruvec, struct list_head *list)
 {
-	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
 	VM_BUG_ON_FOLIO(PageLRU(tail), folio);
 	lockdep_assert_held(&lruvec->lru_lock);
 
@@ -3155,202 +3154,325 @@ static void lru_add_page_tail(struct folio *folio, struct page *tail,
 	}
 }
 
-static void __split_huge_page_tail(struct folio *folio, int tail,
-		struct lruvec *lruvec, struct list_head *list,
-		unsigned int new_order)
+/* Racy check whether the huge page can be split */
+bool can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins)
 {
-	struct page *head = &folio->page;
-	struct page *page_tail = head + tail;
-	/*
-	 * Careful: new_folio is not a "real" folio before we cleared PageTail.
-	 * Don't pass it around before clear_compound_head().
-	 */
-	struct folio *new_folio = (struct folio *)page_tail;
+	int extra_pins;
 
-	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
+	/* Additional pins from page cache */
+	if (folio_test_anon(folio))
+		extra_pins = folio_test_swapcache(folio) ?
+				folio_nr_pages(folio) : 0;
+	else
+		extra_pins = folio_nr_pages(folio);
+	if (pextra_pins)
+		*pextra_pins = extra_pins;
+	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins -
+					caller_pins;
+}
 
-	/*
-	 * Clone page flags before unfreezing refcount.
-	 *
-	 * After successful get_page_unless_zero() might follow flags change,
-	 * for example lock_page() which set PG_waiters.
-	 *
-	 * Note that for mapped sub-pages of an anonymous THP,
-	 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
-	 * the migration entry instead from where remap_page() will restore it.
-	 * We can still have PG_anon_exclusive set on effectively unmapped and
-	 * unreferenced sub-pages of an anonymous THP: we can simply drop
-	 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
-	 */
-	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
-	page_tail->flags |= (head->flags &
-			((1L << PG_referenced) |
-			 (1L << PG_swapbacked) |
-			 (1L << PG_swapcache) |
-			 (1L << PG_mlocked) |
-			 (1L << PG_uptodate) |
-			 (1L << PG_active) |
-			 (1L << PG_workingset) |
-			 (1L << PG_locked) |
-			 (1L << PG_unevictable) |
+static long page_in_folio_offset(struct page *page, struct folio *folio)
+{
+	long nr_pages = folio_nr_pages(folio);
+	unsigned long pages_pfn = page_to_pfn(page);
+	unsigned long folios_pfn = folio_pfn(folio);
+
+	if (pages_pfn >= folios_pfn && pages_pfn < (folios_pfn + nr_pages))
+		return pages_pfn - folios_pfn;
+
+	return -EINVAL;
+}
+
+/*
+ * It splits @folio into @new_order folios and copies the @folio metadata to
+ * all the resulting folios.
+ */
+static int __split_folio_to_order(struct folio *folio, int new_order)
+{
+	int curr_order = folio_order(folio);
+	long nr_pages = folio_nr_pages(folio);
+	long new_nr_pages = 1 << new_order;
+	long index;
+
+	if (curr_order <= new_order)
+		return -EINVAL;
+
+	for (index = new_nr_pages; index < nr_pages; index += new_nr_pages) {
+		struct page *head = &folio->page;
+		struct page *second_head = head + index;
+
+		/*
+		 * Careful: new_folio is not a "real" folio before we cleared PageTail.
+		 * Don't pass it around before clear_compound_head().
+		 */
+		struct folio *new_folio = (struct folio *)second_head;
+
+		VM_BUG_ON_PAGE(atomic_read(&second_head->_mapcount) != -1, second_head);
+
+		/*
+		 * Clone page flags before unfreezing refcount.
+		 *
+		 * After successful get_page_unless_zero() might follow flags change,
+		 * for example lock_page() which set PG_waiters.
+		 *
+		 * Note that for mapped sub-pages of an anonymous THP,
+		 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
+		 * the migration entry instead from where remap_page() will restore it.
+		 * We can still have PG_anon_exclusive set on effectively unmapped and
+		 * unreferenced sub-pages of an anonymous THP: we can simply drop
+		 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
+		 */
+		second_head->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
+		second_head->flags |= (head->flags &
+				((1L << PG_referenced) |
+				 (1L << PG_swapbacked) |
+				 (1L << PG_swapcache) |
+				 (1L << PG_mlocked) |
+				 (1L << PG_uptodate) |
+				 (1L << PG_active) |
+				 (1L << PG_workingset) |
+				 (1L << PG_locked) |
+				 (1L << PG_unevictable) |
 #ifdef CONFIG_ARCH_USES_PG_ARCH_2
-			 (1L << PG_arch_2) |
+				 (1L << PG_arch_2) |
 #endif
 #ifdef CONFIG_ARCH_USES_PG_ARCH_3
-			 (1L << PG_arch_3) |
+				 (1L << PG_arch_3) |
 #endif
-			 (1L << PG_dirty) |
-			 LRU_GEN_MASK | LRU_REFS_MASK));
+				 (1L << PG_dirty) |
+				 LRU_GEN_MASK | LRU_REFS_MASK));
 
-	/* ->mapping in first and second tail page is replaced by other uses */
-	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
-			page_tail);
-	new_folio->mapping = folio->mapping;
-	new_folio->index = folio->index + tail;
+		/* ->mapping in first and second tail page is replaced by other uses */
+		VM_BUG_ON_PAGE(new_nr_pages > 2 && second_head->mapping != TAIL_MAPPING,
+			       second_head);
+		second_head->mapping = head->mapping;
+		second_head->index = head->index + index;
 
-	/*
-	 * page->private should not be set in tail pages. Fix up and warn once
-	 * if private is unexpectedly set.
-	 */
-	if (unlikely(page_tail->private)) {
-		VM_WARN_ON_ONCE_PAGE(true, page_tail);
-		page_tail->private = 0;
-	}
-	if (folio_test_swapcache(folio))
-		new_folio->swap.val = folio->swap.val + tail;
+		/*
+		 * page->private should not be set in tail pages. Fix up and warn once
+		 * if private is unexpectedly set.
+		 */
+		if (unlikely(second_head->private)) {
+			VM_WARN_ON_ONCE_PAGE(true, second_head);
+			second_head->private = 0;
+		}
+		if (folio_test_swapcache(folio))
+			new_folio->swap.val = folio->swap.val + index;
 
-	/* Page flags must be visible before we make the page non-compound. */
-	smp_wmb();
+		/* Page flags must be visible before we make the page non-compound. */
+		smp_wmb();
 
-	/*
-	 * Clear PageTail before unfreezing page refcount.
-	 *
-	 * After successful get_page_unless_zero() might follow put_page()
-	 * which needs correct compound_head().
-	 */
-	clear_compound_head(page_tail);
-	if (new_order) {
-		prep_compound_page(page_tail, new_order);
-		folio_set_large_rmappable(new_folio);
-	}
+		/*
+		 * Clear PageTail before unfreezing page refcount.
+		 *
+		 * After successful get_page_unless_zero() might follow put_page()
+		 * which needs correct compound_head().
+		 */
+		clear_compound_head(second_head);
+		if (new_order) {
+			prep_compound_page(second_head, new_order);
+			folio_set_large_rmappable(new_folio);
 
-	/* Finally unfreeze refcount. Additional reference from page cache. */
-	page_ref_unfreeze(page_tail,
-		1 + ((!folio_test_anon(folio) || folio_test_swapcache(folio)) ?
-			     folio_nr_pages(new_folio) : 0));
+			folio_set_order(folio, new_order);
+		} else {
+			if (PageHead(head))
+				ClearPageCompound(head);
+		}
 
-	if (folio_test_young(folio))
-		folio_set_young(new_folio);
-	if (folio_test_idle(folio))
-		folio_set_idle(new_folio);
+		if (folio_test_young(folio))
+			folio_set_young(new_folio);
+		if (folio_test_idle(folio))
+			folio_set_idle(new_folio);
 
-	folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio));
+		folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio));
+	}
 
-	/*
-	 * always add to the tail because some iterators expect new
-	 * pages to show after the currently processed elements - e.g.
-	 * migrate_pages
-	 */
-	lru_add_page_tail(folio, page_tail, lruvec, list);
+	return 0;
 }
 
-static void __split_huge_page(struct page *page, struct list_head *list,
-		pgoff_t end, unsigned int new_order)
+#define for_each_folio_until_end_safe(iter, iter2, start, end)	\
+	for (iter = start, iter2 = folio_next(start);		\
+	     iter != end;					\
+	     iter = iter2, iter2 = folio_next(iter2))
+
+/*
+ * It splits a @folio (without mapping) to lower order smaller folios in two
+ * ways.
+ * 1. uniform split: the given @folio into multiple @new_order small folios,
+ *    where all small folios have the same order. This is done when
+ *    uniform_split is true.
+ * 2. buddy allocator like split: the given @folio is split into half and one
+ *    of the half (containing the given page) is split into half until the
+ *    given @page's order becomes @new_order. This is done when uniform_split is
+ *    false.
+ *
+ * The high level flow for these two methods are:
+ * 1. uniform split: a single __split_folio_to_order() is called to split the
+ *    @folio into @new_order, then we traverse all the resulting folios one by
+ *    one in PFN ascending order and perform stats, unfreeze, adding to list,
+ *    and file mapping index operations.
+ * 2. buddy allocator like split: in general, folio_order - @new_order calls to
+ *    __split_folio_to_order() are called in the for loop to split the @folio
+ *    to one lower order at a time. The resulting small folios are processed
+ *    like what is done during the traversal in 1, except the one containing
+ *    @page, which is split in next for loop.
+ *
+ * After splitting, the caller's folio reference will be transferred to the
+ * folio containing @page. The other folios may be freed if they are not mapped.
+ *
+ * In terms of locking, after splitting,
+ * 1. uniform split leaves @page (or the folio contains it) locked;
+ * 2. buddy allocator like split leaves @folio locked.
+ *
+ * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
+ */
+static int __folio_split_without_mapping(struct folio *folio, int new_order,
+		struct page *page, struct list_head *list, pgoff_t end,
+		struct xa_state *xas, struct address_space *mapping,
+		bool uniform_split)
 {
-	struct folio *folio = page_folio(page);
-	struct page *head = &folio->page;
 	struct lruvec *lruvec;
 	struct address_space *swap_cache = NULL;
-	unsigned long offset = 0;
-	int i, nr_dropped = 0;
-	unsigned int new_nr = 1 << new_order;
+	struct folio *origin_folio = folio;
+	struct folio *next_folio = folio_next(folio);
+	struct folio *new_folio;
+	struct folio *next;
 	int order = folio_order(folio);
-	unsigned int nr = 1 << order;
-
-	/* complete memcg works before add pages to LRU */
-	split_page_memcg(head, order, new_order);
+	int split_order = order - 1;
+	int nr_dropped = 0;
 
 	if (folio_test_anon(folio) && folio_test_swapcache(folio)) {
-		offset = swap_cache_index(folio->swap);
+		if (!uniform_split)
+			return -EINVAL;
+
 		swap_cache = swap_address_space(folio->swap);
 		xa_lock(&swap_cache->i_pages);
 	}
 
+	if (folio_test_anon(folio))
+		mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
+
 	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
 	lruvec = folio_lruvec_lock(folio);
 
-	ClearPageHasHWPoisoned(head);
-
-	for (i = nr - new_nr; i >= new_nr; i -= new_nr) {
-		struct folio *tail;
-		__split_huge_page_tail(folio, i, lruvec, list, new_order);
-		tail = page_folio(head + i);
-		/* Some pages can be beyond EOF: drop them from page cache */
-		if (tail->index >= end) {
-			if (shmem_mapping(folio->mapping))
-				nr_dropped++;
-			else if (folio_test_clear_dirty(tail))
-				folio_account_cleaned(tail,
-					inode_to_wb(folio->mapping->host));
-			__filemap_remove_folio(tail, NULL);
-			folio_put(tail);
-		} else if (!folio_test_anon(folio)) {
-			__xa_store(&folio->mapping->i_pages, tail->index,
-					tail, 0);
-		} else if (swap_cache) {
-			__xa_store(&swap_cache->i_pages, offset + i,
-					tail, 0);
+	/*
+	 * split to new_order one order at a time. For uniform split,
+	 * intermediate orders are skipped
+	 */
+	for (split_order = order - 1; split_order >= new_order; split_order--) {
+		int old_order = folio_order(folio);
+		struct folio *release;
+		struct folio *end_folio = folio_next(folio);
+		int status;
+
+		if (folio_test_anon(folio) && split_order == 1)
+			continue;
+		if (uniform_split && split_order != new_order)
+			continue;
+
+		if (mapping) {
+			/*
+			 * uniform split has xas_split_alloc() called before
+			 * irq is disabled, since xas_nomem() might not be
+			 * able to allocate enough memory.
+			 */
+			if (uniform_split)
+				xas_split(xas, folio, old_order);
+			else {
+				xas_set_order(xas, folio->index, split_order);
+				xas_set_err(xas, -ENOMEM);
+				if (xas_nomem(xas, 0))
+					xas_split(xas, folio, old_order);
+				else
+					return -ENOMEM;
+			}
 		}
-	}
 
-	if (!new_order)
-		ClearPageCompound(head);
-	else {
-		struct folio *new_folio = (struct folio *)head;
+		split_page_memcg(&folio->page, old_order, split_order);
+		split_page_owner(&folio->page, old_order, split_order);
+		pgalloc_tag_split(folio, old_order, split_order);
 
-		folio_set_order(new_folio, new_order);
-	}
-	unlock_page_lruvec(lruvec);
-	/* Caller disabled irqs, so they are still disabled here */
+		status = __split_folio_to_order(folio, split_order);
 
-	split_page_owner(head, order, new_order);
-	pgalloc_tag_split(folio, order, new_order);
+		if (status < 0)
+			return status;
 
-	/* See comment in __split_huge_page_tail() */
-	if (folio_test_anon(folio)) {
-		/* Additional pin to swap cache */
-		if (folio_test_swapcache(folio)) {
-			folio_ref_add(folio, 1 + new_nr);
-			xa_unlock(&swap_cache->i_pages);
-		} else {
-			folio_ref_inc(folio);
+		/*
+		 * Iterate through after-split folios and perform related
+		 * operations. But in buddy allocator like split, the folio
+		 * containing the specified page is skipped until its order
+		 * is new_order, since the folio will be worked on in next
+		 * iteration.
+		 */
+		for_each_folio_until_end_safe(release, next, folio, end_folio) {
+			if (page_in_folio_offset(page, release) >= 0) {
+				folio = release;
+				if (split_order != new_order)
+					continue;
+			}
+			if (folio_test_anon(release))
+				mod_mthp_stat(folio_order(release),
+						MTHP_STAT_NR_ANON, 1);
+
+			/*
+			 * Unfreeze refcount first. Additional reference from
+			 * page cache.
+			 */
+			folio_ref_unfreeze(release,
+				1 + ((!folio_test_anon(origin_folio) ||
+				     folio_test_swapcache(origin_folio)) ?
+					     folio_nr_pages(release) : 0));
+
+			if (release != origin_folio)
+				lru_add_page_tail(origin_folio, &release->page,
+						lruvec, list);
+
+			/* Some pages can be beyond EOF: drop them from page cache */
+			if (release->index >= end) {
+				if (shmem_mapping(origin_folio->mapping))
+					nr_dropped++;
+				else if (folio_test_clear_dirty(release))
+					folio_account_cleaned(release,
+						inode_to_wb(origin_folio->mapping->host));
+				__filemap_remove_folio(release, NULL);
+				folio_put(release);
+			} else if (!folio_test_anon(release)) {
+				__xa_store(&origin_folio->mapping->i_pages,
+						release->index, &release->page, 0);
+			} else if (swap_cache) {
+				__xa_store(&swap_cache->i_pages,
+						swap_cache_index(release->swap),
+						&release->page, 0);
+			}
 		}
-	} else {
-		/* Additional pin to page cache */
-		folio_ref_add(folio, 1 + new_nr);
-		xa_unlock(&folio->mapping->i_pages);
 	}
+
+	unlock_page_lruvec(lruvec);
+
+	if (folio_test_anon(origin_folio)) {
+		if (folio_test_swapcache(origin_folio))
+			xa_unlock(&swap_cache->i_pages);
+	} else
+		xa_unlock(&mapping->i_pages);
+
+	/* Caller disabled irqs, so they are still disabled here */
 	local_irq_enable();
 
-	if (nr_dropped)
-		shmem_uncharge(folio->mapping->host, nr_dropped);
-	remap_page(folio, nr, PageAnon(head) ? RMP_USE_SHARED_ZEROPAGE : 0);
+	remap_page(origin_folio, 1 << order,
+			folio_test_anon(origin_folio) ?
+				RMP_USE_SHARED_ZEROPAGE : 0);
 
 	/*
-	 * set page to its compound_head when split to non order-0 pages, so
-	 * we can skip unlocking it below, since PG_locked is transferred to
-	 * the compound_head of the page and the caller will unlock it.
+	 * At this point, folio should contain the specified page, so that it
+	 * will be left to the caller to unlock it.
 	 */
-	if (new_order)
-		page = compound_head(page);
-
-	for (i = 0; i < nr; i += new_nr) {
-		struct page *subpage = head + i;
-		struct folio *new_folio = page_folio(subpage);
-		if (subpage == page)
+	for_each_folio_until_end_safe(new_folio, next, origin_folio, next_folio) {
+		if (uniform_split && new_folio == folio)
+			continue;
+		if (!uniform_split && new_folio == origin_folio)
 			continue;
-		folio_unlock(new_folio);
 
+		folio_unlock(new_folio);
 		/*
 		 * Subpages may be freed if there wasn't any mapping
 		 * like if add_to_swap() is running on a lru page that
@@ -3358,81 +3480,18 @@ static void __split_huge_page(struct page *page, struct list_head *list,
 		 * requires taking the lru_lock so we do the put_page
 		 * of the tail pages after the split is complete.
 		 */
-		free_page_and_swap_cache(subpage);
+		free_page_and_swap_cache(&new_folio->page);
 	}
+	return 0;
 }
 
-/* Racy check whether the huge page can be split */
-bool can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins)
-{
-	int extra_pins;
 
-	/* Additional pins from page cache */
-	if (folio_test_anon(folio))
-		extra_pins = folio_test_swapcache(folio) ?
-				folio_nr_pages(folio) : 0;
-	else
-		extra_pins = folio_nr_pages(folio);
-	if (pextra_pins)
-		*pextra_pins = extra_pins;
-	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins -
-					caller_pins;
-}
 
-/*
- * This function splits a large folio into smaller folios of order @new_order.
- * @page can point to any page of the large folio to split. The split operation
- * does not change the position of @page.
- *
- * Prerequisites:
- *
- * 1) The caller must hold a reference on the @page's owning folio, also known
- *    as the large folio.
- *
- * 2) The large folio must be locked.
- *
- * 3) The folio must not be pinned. Any unexpected folio references, including
- *    GUP pins, will result in the folio not getting split; instead, the caller
- *    will receive an -EAGAIN.
- *
- * 4) @new_order > 1, usually. Splitting to order-1 anonymous folios is not
- *    supported for non-file-backed folios, because folio->_deferred_list, which
- *    is used by partially mapped folios, is stored in subpage 2, but an order-1
- *    folio only has subpages 0 and 1. File-backed order-1 folios are supported,
- *    since they do not use _deferred_list.
- *
- * After splitting, the caller's folio reference will be transferred to @page,
- * resulting in a raised refcount of @page after this call. The other pages may
- * be freed if they are not mapped.
- *
- * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
- *
- * Pages in @new_order will inherit the mapping, flags, and so on from the
- * huge page.
- *
- * Returns 0 if the huge page was split successfully.
- *
- * Returns -EAGAIN if the folio has unexpected reference (e.g., GUP) or if
- * the folio was concurrently removed from the page cache.
- *
- * Returns -EBUSY when trying to split the huge zeropage, if the folio is
- * under writeback, if fs-specific folio metadata cannot currently be
- * released, or if some unexpected race happened (e.g., anon VMA disappeared,
- * truncation).
- *
- * Callers should ensure that the order respects the address space mapping
- * min-order if one is set for non-anonymous folios.
- *
- * Returns -EINVAL when trying to split to an order that is incompatible
- * with the folio. Splitting to order 0 is compatible with all folios.
- */
-int split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
-				     unsigned int new_order)
+static int __folio_split(struct folio *folio, unsigned int new_order,
+		struct page *page, struct list_head *list, bool uniform_split)
 {
-	struct folio *folio = page_folio(page);
 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
-	/* reset xarray order to new order after split */
-	XA_STATE_ORDER(xas, &folio->mapping->i_pages, folio->index, new_order);
+	XA_STATE(xas, &folio->mapping->i_pages, folio->index);
 	bool is_anon = folio_test_anon(folio);
 	struct address_space *mapping = NULL;
 	struct anon_vma *anon_vma = NULL;
@@ -3453,9 +3512,10 @@ int split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
 			VM_WARN_ONCE(1, "Cannot split to order-1 folio");
 			return -EINVAL;
 		}
-	} else if (new_order) {
+	} else {
 		/* Split shmem folio to non-zero order not supported */
-		if (shmem_mapping(folio->mapping)) {
+		if ((!uniform_split || new_order) &&
+		    shmem_mapping(folio->mapping)) {
 			VM_WARN_ONCE(1,
 				"Cannot split shmem folio to non-0 order");
 			return -EINVAL;
@@ -3466,7 +3526,7 @@ int split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
 		 * CONFIG_READ_ONLY_THP_FOR_FS. But in that case, the mapping
 		 * does not actually support large folios properly.
 		 */
-		if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
+		if (new_order && IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
 		    !mapping_large_folio_support(folio->mapping)) {
 			VM_WARN_ONCE(1,
 				"Cannot split file folio to non-0 order");
@@ -3475,7 +3535,7 @@ int split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
 	}
 
 	/* Only swapping a whole PMD-mapped folio is supported */
-	if (folio_test_swapcache(folio) && new_order)
+	if (folio_test_swapcache(folio) && (!uniform_split || new_order))
 		return -EINVAL;
 
 	is_hzp = is_huge_zero_folio(folio);
@@ -3532,10 +3592,13 @@ int split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
 			goto out;
 		}
 
-		xas_split_alloc(&xas, folio, folio_order(folio), gfp);
-		if (xas_error(&xas)) {
-			ret = xas_error(&xas);
-			goto out;
+		if (uniform_split) {
+			xas_set_order(&xas, folio->index, new_order);
+			xas_split_alloc(&xas, folio, folio_order(folio), gfp);
+			if (xas_error(&xas)) {
+				ret = xas_error(&xas);
+				goto out;
+			}
 		}
 
 		anon_vma = NULL;
@@ -3600,7 +3663,6 @@ int split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
 		if (mapping) {
 			int nr = folio_nr_pages(folio);
 
-			xas_split(&xas, folio, folio_order(folio));
 			if (folio_test_pmd_mappable(folio) &&
 			    new_order < HPAGE_PMD_ORDER) {
 				if (folio_test_swapbacked(folio)) {
@@ -3618,8 +3680,8 @@ int split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
 			mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
 			mod_mthp_stat(new_order, MTHP_STAT_NR_ANON, 1 << (order - new_order));
 		}
-		__split_huge_page(page, list, end, new_order);
-		ret = 0;
+		ret = __folio_split_without_mapping(page_folio(page), new_order,
+				page, list, end, &xas, mapping, uniform_split);
 	} else {
 		spin_unlock(&ds_queue->split_queue_lock);
 fail:
@@ -3645,6 +3707,61 @@ int split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
 	return ret;
 }
 
+/*
+ * This function splits a large folio into smaller folios of order @new_order.
+ * @page can point to any page of the large folio to split. The split operation
+ * does not change the position of @page.
+ *
+ * Prerequisites:
+ *
+ * 1) The caller must hold a reference on the @page's owning folio, also known
+ *    as the large folio.
+ *
+ * 2) The large folio must be locked.
+ *
+ * 3) The folio must not be pinned. Any unexpected folio references, including
+ *    GUP pins, will result in the folio not getting split; instead, the caller
+ *    will receive an -EAGAIN.
+ *
+ * 4) @new_order > 1, usually. Splitting to order-1 anonymous folios is not
+ *    supported for non-file-backed folios, because folio->_deferred_list, which
+ *    is used by partially mapped folios, is stored in subpage 2, but an order-1
+ *    folio only has subpages 0 and 1. File-backed order-1 folios are supported,
+ *    since they do not use _deferred_list.
+ *
+ * After splitting, the caller's folio reference will be transferred to @page,
+ * resulting in a raised refcount of @page after this call. The other pages may
+ * be freed if they are not mapped.
+ *
+ * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
+ *
+ * Pages in @new_order will inherit the mapping, flags, and so on from the
+ * huge page.
+ *
+ * Returns 0 if the huge page was split successfully.
+ *
+ * Returns -EAGAIN if the folio has unexpected reference (e.g., GUP) or if
+ * the folio was concurrently removed from the page cache.
+ *
+ * Returns -EBUSY when trying to split the huge zeropage, if the folio is
+ * under writeback, if fs-specific folio metadata cannot currently be
+ * released, or if some unexpected race happened (e.g., anon VMA disappeared,
+ * truncation).
+ *
+ * Callers should ensure that the order respects the address space mapping
+ * min-order if one is set for non-anonymous folios.
+ *
+ * Returns -EINVAL when trying to split to an order that is incompatible
+ * with the folio. Splitting to order 0 is compatible with all folios.
+ */
+int split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
+				     unsigned int new_order)
+{
+	struct folio *folio = page_folio(page);
+
+	return __folio_split(folio, new_order, page, list, true);
+}
+
 int min_order_for_split(struct folio *folio)
 {
 	if (folio_test_anon(folio))
@@ -3669,6 +3786,29 @@ int split_folio_to_list(struct folio *folio, struct list_head *list)
 	return split_huge_page_to_list_to_order(&folio->page, list, ret);
 }
 
+/*
+ * folio_split: split a folio at offset_in_new_order to a new_order folio
+ * @folio: folio to split
+ * @new_order: the order of the new folio
+ * @page: a page within the new folio
+ *
+ * return: 0: successful, <0 failed
+ *
+ * Split a folio at offset_in_new_order to a new_order folio, leave the
+ * remaining subpages of the original folio as large as possible. For example,
+ * split an order-9 folio at its third order-3 subpages to an order-3 folio.
+ * There are 2^6=64 order-3 subpages in an order-9 folio and the result will be
+ * a set of folios with different order and the new folio is in bracket:
+ * [order-4, {order-3}, order-3, order-5, order-6, order-7, order-8].
+ *
+ * After split, folio is left locked for caller.
+ */
+static int folio_split(struct folio *folio, unsigned int new_order,
+		struct page *page, struct list_head *list)
+{
+	return __folio_split(folio, new_order, page, list, false);
+}
+
 void __folio_undo_large_rmappable(struct folio *folio)
 {
 	struct deferred_split *ds_queue;
-- 
2.45.2





[Index of Archives]     [Linux ARM Kernel]     [Linux ARM]     [Linux Omap]     [Fedora ARM]     [IETF Annouce]     [Bugtraq]     [Linux OMAP]     [Linux MIPS]     [eCos]     [Asterisk Internet PBX]     [Linux API]

  Powered by Linux