On Tue, 1 Oct 2024 16:59:51 +0200 Danilo Krummrich <dakr@xxxxxxxxxx> wrote: > `Vec` provides a contiguous growable array type with contents allocated > with the kernel's allocators (e.g. `Kmalloc`, `Vmalloc` or `KVmalloc`). > > In contrast to Rust's stdlib `Vec` type, the kernel `Vec` type considers > the kernel's GFP flags for all appropriate functions, always reports > allocation failures through `Result<_, AllocError>` and remains > independent from unstable features. > > Signed-off-by: Danilo Krummrich <dakr@xxxxxxxxxx> Thanks a lot for your work. I think this is much cleaner with the ZST handling offloaded to `Allocator` and overload checking offloaded to `ArrayLayout`. Some nits below, although I think we should apply this and then address the nits with follow up patches (some may also be good first issues). Therefore: Reviewed-by: Gary Guo <gary@xxxxxxxxxxx> Best, Gary > --- > rust/kernel/alloc.rs | 6 + > rust/kernel/alloc/kvec.rs | 637 ++++++++++++++++++++++++++++++++++++++ > rust/kernel/prelude.rs | 2 +- > 3 files changed, 644 insertions(+), 1 deletion(-) > create mode 100644 rust/kernel/alloc/kvec.rs > > diff --git a/rust/kernel/alloc.rs b/rust/kernel/alloc.rs > index bf143a71d53d..961070daf6db 100644 > --- a/rust/kernel/alloc.rs > +++ b/rust/kernel/alloc.rs > @@ -5,6 +5,7 @@ > #[cfg(not(any(test, testlib)))] > pub mod allocator; > pub mod kbox; > +pub mod kvec; > pub mod layout; > pub mod vec_ext; > > @@ -19,6 +20,11 @@ > pub use self::kbox::KVBox; > pub use self::kbox::VBox; > > +pub use self::kvec::KVVec; > +pub use self::kvec::KVec; > +pub use self::kvec::VVec; > +pub use self::kvec::Vec; > + > /// Indicates an allocation error. > #[derive(Copy, Clone, PartialEq, Eq, Debug)] > pub struct AllocError; > diff --git a/rust/kernel/alloc/kvec.rs b/rust/kernel/alloc/kvec.rs > new file mode 100644 > index 000000000000..44aade0a653b > --- /dev/null > +++ b/rust/kernel/alloc/kvec.rs > @@ -0,0 +1,637 @@ > +// SPDX-License-Identifier: GPL-2.0 > + > +//! Implementation of [`Vec`]. > + > +use super::{ > + allocator::{KVmalloc, Kmalloc, Vmalloc}, > + layout::ArrayLayout, > + AllocError, Allocator, Box, Flags, > +}; > +use core::{ > + fmt, > + marker::PhantomData, > + mem::{ManuallyDrop, MaybeUninit}, > + ops::Deref, > + ops::DerefMut, > + ops::Index, > + ops::IndexMut, > + ptr, > + ptr::NonNull, > + slice, > + slice::SliceIndex, > +}; > + > +/// Create a [`KVec`] containing the arguments. This should mention that it allocates using `GFP_KERNEL`. > +/// > +/// # Examples > +/// > +/// ``` > +/// let mut v = kernel::kvec![]; > +/// v.push(1, GFP_KERNEL)?; > +/// assert_eq!(v, [1]); > +/// > +/// let mut v = kernel::kvec![1; 3]?; > +/// v.push(4, GFP_KERNEL)?; > +/// assert_eq!(v, [1, 1, 1, 4]); > +/// > +/// let mut v = kernel::kvec![1, 2, 3]?; > +/// v.push(4, GFP_KERNEL)?; > +/// assert_eq!(v, [1, 2, 3, 4]); > +/// > +/// # Ok::<(), Error>(()) > +/// ``` > +#[macro_export] > +macro_rules! kvec { > + () => ( > + $crate::alloc::KVec::new() > + ); > + ($elem:expr; $n:expr) => ( > + $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL) > + ); > + ($($x:expr),+ $(,)?) => ( > + match $crate::alloc::KBox::new_uninit(GFP_KERNEL) { > + Ok(b) => Ok($crate::alloc::KVec::from($crate::alloc::KBox::write(b, [$($x),+]))), > + Err(e) => Err(e), > + } > + ); > +} > + > +/// The kernel's [`Vec`] type. > +/// > +/// A contiguous growable array type with contents allocated with the kernel's allocators (e.g. > +/// [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`]), written `Vec<T, A>`. > +/// > +/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For > +/// the most common allocators the type aliases [`KVec`], [`VVec`] and [`KVVec`] exist. > +/// > +/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated. > +/// > +/// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the > +/// capacity of the vector (the number of elements that currently fit into the vector), it's length > +/// (the number of elements that are currently stored in the vector) and the `Allocator` type used > +/// to allocate (and free) the backing buffer. > +/// > +/// A [`Vec`] can be deconstructed into and (re-)constructed from it's previously named raw parts > +/// and manually modified. > +/// > +/// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements > +/// are added to the vector. > +/// > +/// # Invariants > +/// > +/// - `self.ptr` is always properly aligned and either points to memory allocated with `A` or, for > +/// zero-sized types, is a dangling, well aligned pointer. > +/// > +/// - `self.len` always represents the exact number of elements stored in the vector. > +/// > +/// - `self.layout` represents the absolute number of elements that can be stored within the vector > +/// without re-allocation. However, it is legal for the backing buffer to be larger than `layout`. > +/// > +/// - The `Allocator` type `A` of the vector is the exact same `Allocator` type the backing buffer > +/// was allocated with (and must be freed with). > +pub struct Vec<T, A: Allocator> { > + ptr: NonNull<T>, > + /// Represents the actual buffer size as `cap` times `size_of::<T>` bytes. > + /// > + /// Note: This isn't quite the same as `Self::capacity`, which in contrast returns the number of > + /// elements we can still store without reallocating. > + layout: ArrayLayout<T>, > + len: usize, > + _p: PhantomData<A>, > +} > + > +/// Type alias for [`Vec`] with a [`Kmalloc`] allocator. > +/// > +/// # Examples > +/// > +/// ``` > +/// let mut v = KVec::new(); > +/// v.push(1, GFP_KERNEL)?; > +/// assert_eq!(&v, &[1]); > +/// > +/// # Ok::<(), Error>(()) > +/// ``` > +pub type KVec<T> = Vec<T, Kmalloc>; > + > +/// Type alias for [`Vec`] with a [`Vmalloc`] allocator. > +/// > +/// # Examples > +/// > +/// ``` > +/// let mut v = VVec::new(); > +/// v.push(1, GFP_KERNEL)?; > +/// assert_eq!(&v, &[1]); > +/// > +/// # Ok::<(), Error>(()) > +/// ``` > +pub type VVec<T> = Vec<T, Vmalloc>; > + > +/// Type alias for [`Vec`] with a [`KVmalloc`] allocator. > +/// > +/// # Examples > +/// > +/// ``` > +/// let mut v = KVVec::new(); > +/// v.push(1, GFP_KERNEL)?; > +/// assert_eq!(&v, &[1]); > +/// > +/// # Ok::<(), Error>(()) > +/// ``` > +pub type KVVec<T> = Vec<T, KVmalloc>; > + > +// SAFETY: `Vec` is `Send` if `T` is `Send` because `Vec` owns its elements. > +unsafe impl<T, A> Send for Vec<T, A> > +where > + T: Send, > + A: Allocator, > +{ > +} > + > +// SAFETY: `Vec` is `Sync` if `T` is `Sync` because `Vec` owns its elements. > +unsafe impl<T, A> Sync for Vec<T, A> > +where > + T: Sync, > + A: Allocator, > +{ > +} > + > +impl<T, A> Vec<T, A> > +where > + A: Allocator, > +{ > + #[inline] > + const fn is_zst() -> bool { > + core::mem::size_of::<T>() == 0 > + } > + > + /// Returns the number of elements that can be stored within the vector without allocating > + /// additional memory. > + pub fn capacity(&self) -> usize { > + if const { Self::is_zst() } { > + usize::MAX > + } else { > + self.layout.len() > + } > + } > + > + /// Returns the number of elements stored within the vector. > + #[inline] > + pub fn len(&self) -> usize { > + self.len > + } > + > + /// Forcefully sets `self.len` to `new_len`. > + /// > + /// # Safety > + /// > + /// - `new_len` must be less than or equal to [`Self::capacity`]. > + /// - If `new_len` is greater than `self.len`, all elements within the interval > + /// [`self.len`,`new_len`) must be initialized. > + #[inline] > + pub unsafe fn set_len(&mut self, new_len: usize) { > + debug_assert!(new_len <= self.capacity()); > + self.len = new_len; > + } > + > + /// Returns a slice of the entire vector. > + #[inline] > + pub fn as_slice(&self) -> &[T] { > + self > + } > + > + /// Returns a mutable slice of the entire vector. > + #[inline] > + pub fn as_mut_slice(&mut self) -> &mut [T] { > + self > + } > + > + /// Returns a mutable raw pointer to the vector's backing buffer, or, if `T` is a ZST, a > + /// dangling raw pointer. > + #[inline] > + pub fn as_mut_ptr(&mut self) -> *mut T { > + self.ptr.as_ptr() > + } > + > + /// Returns a raw pointer to the vector's backing buffer, or, if `T` is a ZST, a dangling raw > + /// pointer. > + #[inline] > + pub fn as_ptr(&self) -> *const T { > + self.ptr.as_ptr() > + } > + > + /// Returns `true` if the vector contains no elements, `false` otherwise. > + /// > + /// # Examples > + /// > + /// ``` > + /// let mut v = KVec::new(); > + /// assert!(v.is_empty()); > + /// > + /// v.push(1, GFP_KERNEL); > + /// assert!(!v.is_empty()); > + /// ``` > + #[inline] > + pub fn is_empty(&self) -> bool { > + self.len() == 0 > + } > + > + /// Creates a new, empty Vec<T, A>. > + /// > + /// This method does not allocate by itself. > + #[inline] > + pub const fn new() -> Self { Missing // INVARIANT here. > + Self { > + ptr: NonNull::dangling(), > + layout: ArrayLayout::empty(), > + len: 0, > + _p: PhantomData::<A>, > + } > + } > + > + /// Returns a slice of `MaybeUninit<T>` for the remaining spare capacity of the vector. > + pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] { > + // SAFETY: > + // - `self.len` is smaller than `self.capacity` and hence, the resulting pointer is > + // guaranteed to be part of the same allocated object. > + // - `self.len` can not overflow `isize`. > + let ptr = unsafe { self.as_mut_ptr().add(self.len) } as *mut MaybeUninit<T>; > + > + // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated > + // and valid, but uninitialized. > + unsafe { slice::from_raw_parts_mut(ptr, self.capacity() - self.len) } > + } > + > + /// Appends an element to the back of the [`Vec`] instance. > + /// > + /// # Examples > + /// > + /// ``` > + /// let mut v = KVec::new(); > + /// v.push(1, GFP_KERNEL)?; > + /// assert_eq!(&v, &[1]); > + /// > + /// v.push(2, GFP_KERNEL)?; > + /// assert_eq!(&v, &[1, 2]); > + /// # Ok::<(), Error>(()) > + /// ``` > + pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> { > + self.reserve(1, flags)?; > + > + // SAFETY: > + // - `self.len` is smaller than `self.capacity` and hence, the resulting pointer is > + // guaranteed to be part of the same allocated object. > + // - `self.len` can not overflow `isize`. > + let ptr = unsafe { self.as_mut_ptr().add(self.len) }; > + > + // SAFETY: > + // - `ptr` is properly aligned and valid for writes. > + unsafe { core::ptr::write(ptr, v) }; > + > + // SAFETY: We just initialised the first spare entry, so it is safe to increase the length > + // by 1. We also know that the new length is <= capacity because of the previous call to > + // `reserve` above. > + unsafe { self.set_len(self.len() + 1) }; > + Ok(()) > + } > + > + /// Creates a new [`Vec`] instance with at least the given capacity. > + /// > + /// # Examples > + /// > + /// ``` > + /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?; > + /// > + /// assert!(v.capacity() >= 20); > + /// # Ok::<(), Error>(()) > + /// ``` > + pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> { > + let mut v = Vec::new(); > + > + v.reserve(capacity, flags)?; > + > + Ok(v) > + } > + > + /// Creates a Vec<T, A> from a pointer, a length and a capacity using the allocator `A`. > + /// > + /// # Examples > + /// > + /// ``` > + /// let mut v = kernel::kvec![1, 2, 3]?; > + /// v.reserve(1, GFP_KERNEL)?; > + /// > + /// let (mut ptr, mut len, cap) = v.into_raw_parts(); > + /// > + /// // SAFETY: We've just reserved memory for another element. > + /// unsafe { ptr.add(len).write(4) }; > + /// len += 1; > + /// > + /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and > + /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it > + /// // from the exact same raw parts. > + /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) }; > + /// > + /// assert_eq!(v, [1, 2, 3, 4]); > + /// > + /// # Ok::<(), Error>(()) > + /// ``` > + /// > + /// # Safety > + /// > + /// If `T` is a ZST: > + /// > + /// - `ptr` must be a dangling, well aligned pointer. > + /// > + /// Otherwise: > + /// > + /// - `ptr` must have been allocated with the allocator `A`. > + /// - `ptr` must satisfy or exceed the alignment requirements of `T`. > + /// - `ptr` must point to memory with a size of at least `size_of::<T>() * capacity`. > + /// bytes. > + /// - The allocated size in bytes must not be larger than `isize::MAX`. > + /// - `length` must be less than or equal to `capacity`. > + /// - The first `length` elements must be initialized values of type `T`. > + /// > + /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for > + /// `cap` and `len`. > + pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self { > + let layout = if Self::is_zst() { > + ArrayLayout::empty() > + } else { > + // SAFETY: By the safety requirements of this function, `capacity * size_of::<T>()` is > + // smaller than `isize::MAX`. > + unsafe { ArrayLayout::new_unchecked(capacity) } > + }; Missing // INVARIANT here. > + > + Self { > + // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid > + // memory allocation, allocated with `A`. > + ptr: unsafe { NonNull::new_unchecked(ptr) }, > + layout, > + len: length, > + _p: PhantomData::<A>, > + } > + } > + > + /// Consumes the `Vec<T, A>` and returns its raw components `pointer`, `length` and `capacity`. > + /// > + /// This will not run the destructor of the contained elements and for non-ZSTs the allocation > + /// will stay alive indefinitely. Use [`Vec::from_raw_parts`] to recover the [`Vec`], drop the > + /// elements and free the allocation, if any. > + pub fn into_raw_parts(self) -> (*mut T, usize, usize) { > + let mut me = ManuallyDrop::new(self); > + let len = me.len(); > + let capacity = me.capacity(); > + let ptr = me.as_mut_ptr(); > + (ptr, len, capacity) > + } > + > + /// Ensures that the capacity exceeds the length by at least `additional` > + /// elements. > + /// > + /// # Examples > + /// > + /// ``` > + /// let mut v = KVec::new(); > + /// v.push(1, GFP_KERNEL)?; > + /// > + /// v.reserve(10, GFP_KERNEL)?; > + /// let cap = v.capacity(); > + /// assert!(cap >= 10); > + /// > + /// v.reserve(10, GFP_KERNEL)?; > + /// let new_cap = v.capacity(); > + /// assert_eq!(new_cap, cap); > + /// > + /// # Ok::<(), Error>(()) > + /// ``` > + pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> { > + let len = self.len(); > + let cap = self.capacity(); > + > + if cap - len >= additional { > + return Ok(()); > + } > + > + if Self::is_zst() { > + // The capacity is already `usize::MAX` for ZSTs, we can't go higher. > + return Err(AllocError); > + } > + > + // We know that `cap <= isize::MAX` because of the type invariants of `Self`. So the > + // multiplication by two won't overflow. > + let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?); > + let layout = ArrayLayout::new(new_cap).map_err(|_| AllocError)?; > + > + // SAFETY: > + // - `ptr` is valid because it's either `None` or comes from a previous call to > + // `A::realloc`. > + // - `self.layout` matches the `ArrayLayout` of the preceeding allocation. > + let ptr = unsafe { > + A::realloc( > + Some(self.ptr.cast()), > + layout.into(), > + self.layout.into(), > + flags, > + )? > + }; Missing // INVARIANT here. > + > + self.ptr = ptr.cast(); > + self.layout = layout; > + > + Ok(()) > + } > +}