On Thu, 12 Sep 2024 00:52:49 +0200 Danilo Krummrich <dakr@xxxxxxxxxx> wrote: > `Vec` provides a contiguous growable array type with contents allocated > with the kernel's allocators (e.g. `Kmalloc`, `Vmalloc` or `KVmalloc`). > > In contrast to Rust's stdlib `Vec` type, the kernel `Vec` type considers > the kernel's GFP flags for all appropriate functions, always reports > allocation failures through `Result<_, AllocError>` and remains > independent from unstable features. > > Signed-off-by: Danilo Krummrich <dakr@xxxxxxxxxx> > --- > rust/kernel/alloc.rs | 6 + > rust/kernel/alloc/kvec.rs | 638 ++++++++++++++++++++++++++++++++++++++ > rust/kernel/prelude.rs | 2 +- > 3 files changed, 645 insertions(+), 1 deletion(-) > create mode 100644 rust/kernel/alloc/kvec.rs > > diff --git a/rust/kernel/alloc.rs b/rust/kernel/alloc.rs > index 1d0cb6f12af9..4fb983b63d46 100644 > --- a/rust/kernel/alloc.rs > +++ b/rust/kernel/alloc.rs > @@ -5,6 +5,7 @@ > #[cfg(not(any(test, testlib)))] > pub mod allocator; > pub mod kbox; > +pub mod kvec; > pub mod vec_ext; > > #[cfg(any(test, testlib))] > @@ -18,6 +19,11 @@ > pub use self::kbox::KVBox; > pub use self::kbox::VBox; > > +pub use self::kvec::KVVec; > +pub use self::kvec::KVec; > +pub use self::kvec::VVec; > +pub use self::kvec::Vec; > + > /// Indicates an allocation error. > #[derive(Copy, Clone, PartialEq, Eq, Debug)] > pub struct AllocError; > diff --git a/rust/kernel/alloc/kvec.rs b/rust/kernel/alloc/kvec.rs > new file mode 100644 > index 000000000000..631a44e19f35 > --- /dev/null > +++ b/rust/kernel/alloc/kvec.rs > @@ -0,0 +1,638 @@ > +// SPDX-License-Identifier: GPL-2.0 > + > +//! Implementation of [`Vec`]. > + > +use super::{ > + allocator::{KVmalloc, Kmalloc, Vmalloc}, > + AllocError, Allocator, Box, Flags, > +}; > +use core::{ > + fmt, > + marker::PhantomData, > + mem::{ManuallyDrop, MaybeUninit}, > + ops::Deref, > + ops::DerefMut, > + ops::Index, > + ops::IndexMut, > + ptr::NonNull, > + slice, > + slice::SliceIndex, > +}; > + > +/// Create a [`Vec`] containing the arguments. > +/// > +/// # Examples > +/// > +/// ``` > +/// let mut v = kernel::kvec![]; > +/// v.push(1, GFP_KERNEL)?; > +/// assert_eq!(v, [1]); > +/// > +/// let mut v = kernel::kvec![1; 3]?; > +/// v.push(4, GFP_KERNEL)?; > +/// assert_eq!(v, [1, 1, 1, 4]); > +/// > +/// let mut v = kernel::kvec![1, 2, 3]?; > +/// v.push(4, GFP_KERNEL)?; > +/// assert_eq!(v, [1, 2, 3, 4]); > +/// > +/// # Ok::<(), Error>(()) > +/// ``` > +#[macro_export] > +macro_rules! kvec { > + () => ( > + $crate::alloc::KVec::new() > + ); > + ($elem:expr; $n:expr) => ( > + $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL) > + ); > + ($($x:expr),+ $(,)?) => ( > + match $crate::alloc::KBox::new_uninit(GFP_KERNEL) { > + Ok(b) => Ok($crate::alloc::KVec::from($crate::alloc::KBox::write(b, [$($x),+]))), > + Err(e) => Err(e), > + } > + ); > +} > + > +/// The kernel's [`Vec`] type. > +/// > +/// A contiguous growable array type with contents allocated with the kernel's allocators (e.g. > +/// `Kmalloc`, `Vmalloc` or `KVmalloc`), written `Vec<T, A>`. > +/// > +/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For > +/// the most common allocators the type aliases `KVec`, `VVec` and `KVVec` exist. > +/// > +/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated. > +/// > +/// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the > +/// capacity of the vector (the number of elements that currently fit into the vector), it's length > +/// (the number of elements that are currently stored in the vector) and the `Allocator` type used > +/// to allocate (and free) the backing buffer. > +/// > +/// A [`Vec`] can be deconstructed into and (re-)constructed from it's previously named raw parts > +/// and manually modified. > +/// > +/// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements > +/// are added to the vector. > +/// > +/// # Invariants > +/// > +/// - `self.ptr` is always properly aligned and either points to memory allocated with `A` or, for > +/// zero-sized types, is a dangling, well aligned pointer. > +/// > +/// - `self.len` always represents the exact number of elements stored in the vector. > +/// > +/// - `self.cap` represents the absolute number of elements that can be stored within the vector > +/// without re-allocation. However, it is legal for the backing buffer to be larger than > +/// `size_of<T>` times the capacity. > +/// > +/// - The `Allocator` type `A` of the vector is the exact same `Allocator` type the backing buffer > +/// was allocated with (and must be freed with). > +pub struct Vec<T, A: Allocator> { > + ptr: NonNull<T>, > + /// Represents the actual buffer size as `cap` times `size_of::<T>` bytes. > + /// > + /// Note: This isn't quite the same as `Self::capacity`, which in contrast returns the number of > + /// elements we can still store without reallocating. > + /// > + /// # Invariants > + /// > + /// `cap` must be in the `0..=isize::MAX` range. > + cap: usize, > + len: usize, > + _p: PhantomData<A>, > +} > + > +/// Type alias for [`Vec`] with a [`Kmalloc`] allocator. > +/// > +/// # Examples > +/// > +/// ``` > +/// let mut v = KVec::new(); > +/// v.push(1, GFP_KERNEL)?; > +/// assert_eq!(&v, &[1]); > +/// > +/// # Ok::<(), Error>(()) > +/// ``` > +pub type KVec<T> = Vec<T, Kmalloc>; > + > +/// Type alias for [`Vec`] with a [`Vmalloc`] allocator. > +/// > +/// # Examples > +/// > +/// ``` > +/// let mut v = VVec::new(); > +/// v.push(1, GFP_KERNEL)?; > +/// assert_eq!(&v, &[1]); > +/// > +/// # Ok::<(), Error>(()) > +/// ``` > +pub type VVec<T> = Vec<T, Vmalloc>; > + > +/// Type alias for [`Vec`] with a [`KVmalloc`] allocator. > +/// > +/// # Examples > +/// > +/// ``` > +/// let mut v = KVVec::new(); > +/// v.push(1, GFP_KERNEL)?; > +/// assert_eq!(&v, &[1]); > +/// > +/// # Ok::<(), Error>(()) > +/// ``` > +pub type KVVec<T> = Vec<T, KVmalloc>; > + > +// SAFETY: `Vec` is `Send` if `T` is `Send` because `Vec` owns its elements. > +unsafe impl<T, A> Send for Vec<T, A> > +where > + T: Send, > + A: Allocator, > +{ > +} > + > +// SAFETY: `Vec` is `Sync` if `T` is `Sync` because `Vec` owns its elements. > +unsafe impl<T, A> Sync for Vec<T, A> > +where > + T: Sync, > + A: Allocator, > +{ > +} > + > +impl<T, A> Vec<T, A> > +where > + A: Allocator, > +{ > + #[inline] > + fn is_zst() -> bool { > + core::mem::size_of::<T>() == 0 > + } > + > + /// Returns the number of elements that can be stored within the vector without allocating > + /// additional memory. > + pub fn capacity(&self) -> usize { > + if Self::is_zst() { Better to ensure everything ZST related is const to avoid putting load on optimizer. The Rust standard library defines a trait `SizedTypeProperties` and an associative const, but you can also just do: if const { Self::is_zst() } { (and change is_zst to const). You might need to add `feature(inline_const)` since it's stable in 1.79 and we have MSRV of 1.76 (the trait method doesn't need new feature gate). > + usize::MAX > + } else { > + self.cap > + } > + } > + > + /// Returns the number of elements stored within the vector. > + #[inline] > + pub fn len(&self) -> usize { > + self.len > + } > + > + /// Forcefully sets `self.len` to `new_len`. > + /// > + /// # Safety > + /// > + /// - `new_len` must be less than or equal to [`Self::capacity`]. > + /// - If `new_len` is greater than `self.len`, all elements within the interval > + /// [`self.len`,`new_len`) must be initialized. > + #[inline] > + pub unsafe fn set_len(&mut self, new_len: usize) { > + debug_assert!(new_len <= self.capacity()); > + self.len = new_len; > + } > + > + /// Returns a slice of the entire vector. > + #[inline] > + pub fn as_slice(&self) -> &[T] { > + self > + } > + > + /// Returns a mutable slice of the entire vector. > + #[inline] > + pub fn as_mut_slice(&mut self) -> &mut [T] { > + self > + } > + > + /// Returns a mutable raw pointer to the vector's backing buffer, or, if `T` is a ZST, a > + /// dangling raw pointer. > + #[inline] > + pub fn as_mut_ptr(&mut self) -> *mut T { > + self.ptr.as_ptr() > + } > + > + /// Returns a raw pointer to the vector's backing buffer, or, if `T` is a ZST, a dangling raw > + /// pointer. > + #[inline] > + pub fn as_ptr(&self) -> *const T { > + self.ptr.as_ptr() > + } > + > + /// Returns `true` if the vector contains no elements, `false` otherwise. > + /// > + /// # Examples > + /// > + /// ``` > + /// let mut v = KVec::new(); > + /// assert!(v.is_empty()); > + /// > + /// v.push(1, GFP_KERNEL); > + /// assert!(!v.is_empty()); > + /// ``` > + #[inline] > + pub fn is_empty(&self) -> bool { > + self.len() == 0 > + } > + > + /// Creates a new, empty Vec<T, A>. > + /// > + /// This method does not allocate by itself. > + #[inline] > + pub const fn new() -> Self { > + Self { > + ptr: NonNull::dangling(), > + cap: 0, > + len: 0, > + _p: PhantomData::<A>, > + } > + } > + > + /// Returns a slice of `MaybeUninit<T>` for the remaining spare capacity of the vector. > + pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] { > + // SAFETY: > + // - `self.len` is smaller than `self.capacity` and hence, the resulting pointer is > + // guaranteed to be part of the same allocated object. > + // - `self.len` can not overflow `isize`. > + let ptr = unsafe { self.as_mut_ptr().add(self.len) } as *mut MaybeUninit<T>; > + > + // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated > + // and valid, but uninitialized. > + unsafe { slice::from_raw_parts_mut(ptr, self.capacity() - self.len) } > + } > + > + /// Appends an element to the back of the [`Vec`] instance. > + /// > + /// # Examples > + /// > + /// ``` > + /// let mut v = KVec::new(); > + /// v.push(1, GFP_KERNEL)?; > + /// assert_eq!(&v, &[1]); > + /// > + /// v.push(2, GFP_KERNEL)?; > + /// assert_eq!(&v, &[1, 2]); > + /// # Ok::<(), Error>(()) > + /// ``` > + pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> { > + Vec::reserve(self, 1, flags)?; Not sure why this isn't `self.reserve(1, flags)?`? > + > + // SAFETY: > + // - `self.len` is smaller than `self.capacity` and hence, the resulting pointer is > + // guaranteed to be part of the same allocated object. > + // - `self.len` can not overflow `isize`. > + let ptr = unsafe { self.as_mut_ptr().add(self.len) }; > + > + // SAFETY: > + // - `ptr` is properly aligned and valid for writes. > + unsafe { core::ptr::write(ptr, v) }; > + > + // SAFETY: We just initialised the first spare entry, so it is safe to increase the length > + // by 1. We also know that the new length is <= capacity because of the previous call to > + // `reserve` above. > + unsafe { self.set_len(self.len() + 1) }; > + Ok(()) > + } > + > + /// Creates a new [`Vec`] instance with at least the given capacity. > + /// > + /// # Examples > + /// > + /// ``` > + /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?; > + /// > + /// assert!(v.capacity() >= 20); > + /// # Ok::<(), Error>(()) > + /// ``` > + pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> { > + let mut v = Vec::new(); > + > + Self::reserve(&mut v, capacity, flags)?; same here. > + > + Ok(v) > + } > + > + /// Pushes clones of the elements of slice into the [`Vec`] instance. > + /// > + /// # Examples > + /// > + /// ``` > + /// let mut v = KVec::new(); > + /// v.push(1, GFP_KERNEL)?; > + /// > + /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?; > + /// assert_eq!(&v, &[1, 20, 30, 40]); > + /// > + /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?; > + /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]); > + /// # Ok::<(), Error>(()) > + /// ``` > + pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError> > + where > + T: Clone, > + { > + self.reserve(other.len(), flags)?; > + for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) { > + slot.write(item.clone()); > + } > + > + // SAFETY: > + // - `other.len()` spare entries have just been initialized, so it is safe to increase > + // the length by the same number. > + // - `self.len() + other.len() <= self.capacity()` is guaranteed by the preceding `reserve` > + // call. > + unsafe { self.set_len(self.len() + other.len()) }; > + Ok(()) > + } > + > + /// Creates a Vec<T, A> from a pointer, a length and a capacity using the allocator `A`. > + /// > + /// # Examples > + /// > + /// ``` > + /// let mut v = kernel::kvec![1, 2, 3]?; > + /// v.reserve(1, GFP_KERNEL)?; > + /// > + /// let (mut ptr, mut len, cap) = v.into_raw_parts(); > + /// > + /// // SAFETY: We've just reserved memory for another element. > + /// unsafe { ptr.add(len).write(4) }; > + /// len += 1; > + /// > + /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and > + /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it > + /// // from the exact same raw parts. > + /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) }; > + /// > + /// assert_eq!(v, [1, 2, 3, 4]); > + /// > + /// # Ok::<(), Error>(()) > + /// ``` > + /// > + /// # Safety > + /// > + /// If `T` is a ZST: > + /// > + /// - `ptr` must be a dangling, well aligned pointer. > + /// > + /// Otherwise: > + /// > + /// - `ptr` must have been allocated with the allocator `A`. > + /// - `ptr` must satisfy or exceed the alignment requirements of `T`. > + /// - `ptr` must point to memory with a size of at least `size_of::<T>() * capacity`. > + /// bytes. > + /// - The allocated size in bytes must not be larger than `isize::MAX`. > + /// - `length` must be less than or equal to `capacity`. > + /// - The first `length` elements must be initialized values of type `T`. > + /// > + /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for > + /// `cap` and `len`. > + pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self { > + let cap = if Self::is_zst() { 0 } else { capacity }; > + > + Self { > + // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid > + // memory allocation, allocated with `A`. > + ptr: unsafe { NonNull::new_unchecked(ptr) }, > + cap, > + len: length, > + _p: PhantomData::<A>, > + } > + } > + > + /// Consumes the `Vec<T, A>` and returns its raw components `pointer`, `length` and `capacity`. > + /// > + /// This will not run the destructor of the contained elements and for non-ZSTs the allocation > + /// will stay alive indefinitely. Use [`Vec::from_raw_parts`] to recover the [`Vec`], drop the > + /// elements and free the allocation, if any. > + pub fn into_raw_parts(self) -> (*mut T, usize, usize) { > + let mut me = ManuallyDrop::new(self); > + let len = me.len(); > + let capacity = me.capacity(); > + let ptr = me.as_mut_ptr(); > + (ptr, len, capacity) > + } > + > + /// Ensures that the capacity exceeds the length by at least `additional` > + /// elements. > + /// > + /// # Examples > + /// > + /// ``` > + /// let mut v = KVec::new(); > + /// v.push(1, GFP_KERNEL)?; > + /// > + /// v.reserve(10, GFP_KERNEL)?; > + /// let cap = v.capacity(); > + /// assert!(cap >= 10); > + /// > + /// v.reserve(10, GFP_KERNEL)?; > + /// let new_cap = v.capacity(); > + /// assert_eq!(new_cap, cap); > + /// > + /// # Ok::<(), Error>(()) > + /// ``` > + pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> { > + let len = self.len(); > + let cap = self.capacity(); > + > + if cap - len >= additional { > + return Ok(()); > + } > + > + if Self::is_zst() { > + // The capacity is already `usize::MAX` for ZSTs, we can't go higher. > + return Err(AllocError); > + } > + > + // We know `cap` is <= `isize::MAX` because of the type invariants of `Self`. So the > + // multiplication by two won't overflow. > + let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?); > + let layout = core::alloc::Layout::array::<T>(new_cap).map_err(|_| AllocError)?; > + > + // We need to make sure that `ptr` is either NULL or comes from a previous call to > + // `realloc_flags`. A `Vec<T, A>`'s `ptr` value is not guaranteed to be NULL and might be > + // dangling after being created with `Vec::new`. Instead, we can rely on `Vec<T, A>`'s > + // capacity to be zero if no memory has been allocated yet. > + let ptr = if cap == 0 { > + None > + } else { > + Some(self.ptr.cast()) > + }; > + > + // SAFETY: `ptr` is valid because it's either `None` or comes from a previous call to > + // `A::realloc`. We also verified that the type is not a ZST. > + let ptr = unsafe { A::realloc(ptr, layout, flags)? }; > + > + self.ptr = ptr.cast(); > + > + // INVARIANT: `Layout::array` fails if the resulting byte size is greater than `isize::MAX`. > + self.cap = new_cap; > + > + Ok(()) > + } > +} > + > +impl<T: Clone, A: Allocator> Vec<T, A> { > + /// Extend the vector by `n` clones of `value`. > + pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> { > + if n == 0 { > + return Ok(()); > + } > + > + self.reserve(n, flags)?; > + > + let spare = self.spare_capacity_mut(); > + > + for item in spare.iter_mut().take(n - 1) { > + item.write(value.clone()); > + } > + > + // We can write the last element directly without cloning needlessly. > + spare[n - 1].write(value); > + > + // SAFETY: > + // - `self.len() + n < self.capacity()` due to the call to reserve above, > + // - the loop and the line above initialized the next `n` elements. > + unsafe { self.set_len(self.len() + n) }; > + > + Ok(()) > + } > + > + /// Create a new `Vec<T, A> and extend it by `n` clones of `value`. > + pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> { > + let mut v = Self::with_capacity(n, flags)?; > + > + v.extend_with(n, value, flags)?; > + > + Ok(v) > + } > +} > + > +impl<T, A> Drop for Vec<T, A> > +where > + A: Allocator, > +{ > + fn drop(&mut self) { > + // SAFETY: We need to drop the vector's elements in place, before we free the backing > + // memory. > + unsafe { > + core::ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut( > + self.as_mut_ptr(), > + self.len, > + )) > + }; Comment: this can be `core::ptr::drop_in_place(&mut *self)`. The standard library plays safe with raw pointers because it has `#[may_dangle]` on T. However I think we should keep the code as is. > + > + // If `cap == 0` we never allocated any memory in the first place. > + if self.cap != 0 { > + // SAFETY: `self.ptr` was previously allocated with `A`. > + unsafe { A::free(self.ptr.cast()) }; > + } > + } > +} > + > +impl<T, A, const N: usize> From<Box<[T; N], A>> for Vec<T, A> > +where > + A: Allocator, > +{ > + fn from(b: Box<[T; N], A>) -> Vec<T, A> { > + let len = b.len(); > + let ptr = Box::into_raw(b); > + > + // SAFETY: > + // - `b` has been allocated with `A`, > + // - `ptr` fulfills the alignment requirements for `T`, > + // - `ptr` points to memory with at least a size of `size_of::<T>() * len`, > + // - all elements within `b` are initialized values of `T`, > + // - `len` does not exceed `isize::MAX`. > + unsafe { Vec::from_raw_parts(ptr as _, len, len) } > + } > +} > + > +impl<T> Default for KVec<T> { > + #[inline] > + fn default() -> Self { > + Self::new() > + } > +} > + > +impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> { > + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { > + fmt::Debug::fmt(&**self, f) > + } > +} > + > +impl<T, A> Deref for Vec<T, A> > +where > + A: Allocator, > +{ > + type Target = [T]; > + > + #[inline] > + fn deref(&self) -> &[T] { > + // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len` > + // initialized elements of type `T`. > + unsafe { slice::from_raw_parts(self.as_ptr(), self.len) } > + } > +} > + > +impl<T, A> DerefMut for Vec<T, A> > +where > + A: Allocator, > +{ > + #[inline] > + fn deref_mut(&mut self) -> &mut [T] { > + // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len` > + // initialized elements of type `T`. > + unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) } > + } > +} > + > +impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {} > + > +impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A> > +where > + A: Allocator, > +{ > + type Output = I::Output; > + > + #[inline] > + fn index(&self, index: I) -> &Self::Output { > + Index::index(&**self, index) > + } > +} > + > +impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A> > +where > + A: Allocator, > +{ > + #[inline] > + fn index_mut(&mut self, index: I) -> &mut Self::Output { > + IndexMut::index_mut(&mut **self, index) > + } > +} > + > +macro_rules! impl_slice_eq { > + ([$($vars:tt)*] $lhs:ty, $rhs:ty) => { > + impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs > + where > + T: PartialEq<U>, > + { > + #[inline] > + fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] } > + } > + } > +} > + > +impl_slice_eq! { [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2> } > +impl_slice_eq! { [A: Allocator] Vec<T, A>, &[U] } > +impl_slice_eq! { [A: Allocator] Vec<T, A>, &mut [U] } > +impl_slice_eq! { [A: Allocator] &[T], Vec<U, A> } > +impl_slice_eq! { [A: Allocator] &mut [T], Vec<U, A> } > +impl_slice_eq! { [A: Allocator] Vec<T, A>, [U] } > +impl_slice_eq! { [A: Allocator] [T], Vec<U, A> } > +impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, [U; N] } > +impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, &[U; N] } > diff --git a/rust/kernel/prelude.rs b/rust/kernel/prelude.rs > index d5f2fe42d093..80223cdaa485 100644 > --- a/rust/kernel/prelude.rs > +++ b/rust/kernel/prelude.rs > @@ -14,7 +14,7 @@ > #[doc(no_inline)] > pub use core::pin::Pin; > > -pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, VBox}; > +pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, KVVec, KVec, VBox, VVec}; > > #[doc(no_inline)] > pub use alloc::vec::Vec;