On 12.09.24 00:52, Danilo Krummrich wrote: > diff --git a/rust/kernel/alloc/kvec.rs b/rust/kernel/alloc/kvec.rs > new file mode 100644 > index 000000000000..631a44e19f35 > --- /dev/null > +++ b/rust/kernel/alloc/kvec.rs > @@ -0,0 +1,638 @@ > +// SPDX-License-Identifier: GPL-2.0 > + > +//! Implementation of [`Vec`]. > + > +use super::{ > + allocator::{KVmalloc, Kmalloc, Vmalloc}, > + AllocError, Allocator, Box, Flags, > +}; > +use core::{ > + fmt, > + marker::PhantomData, > + mem::{ManuallyDrop, MaybeUninit}, > + ops::Deref, > + ops::DerefMut, > + ops::Index, > + ops::IndexMut, > + ptr::NonNull, > + slice, > + slice::SliceIndex, > +}; > + > +/// Create a [`Vec`] containing the arguments. I would change this to [`KVec`]. > +/// > +/// # Examples > +/// > +/// ``` > +/// let mut v = kernel::kvec![]; > +/// v.push(1, GFP_KERNEL)?; > +/// assert_eq!(v, [1]); > +/// > +/// let mut v = kernel::kvec![1; 3]?; > +/// v.push(4, GFP_KERNEL)?; > +/// assert_eq!(v, [1, 1, 1, 4]); > +/// > +/// let mut v = kernel::kvec![1, 2, 3]?; > +/// v.push(4, GFP_KERNEL)?; > +/// assert_eq!(v, [1, 2, 3, 4]); > +/// > +/// # Ok::<(), Error>(()) > +/// ``` > +#[macro_export] > +macro_rules! kvec { > + () => ( > + $crate::alloc::KVec::new() > + ); > + ($elem:expr; $n:expr) => ( > + $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL) > + ); > + ($($x:expr),+ $(,)?) => ( > + match $crate::alloc::KBox::new_uninit(GFP_KERNEL) { > + Ok(b) => Ok($crate::alloc::KVec::from($crate::alloc::KBox::write(b, [$($x),+]))), > + Err(e) => Err(e), > + } > + ); > +} > + > +/// The kernel's [`Vec`] type. > +/// > +/// A contiguous growable array type with contents allocated with the kernel's allocators (e.g. > +/// `Kmalloc`, `Vmalloc` or `KVmalloc`), written `Vec<T, A>`. Can you turn these into links? > +/// > +/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For > +/// the most common allocators the type aliases `KVec`, `VVec` and `KVVec` exist. Ditto. > +/// > +/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated. > +/// > +/// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the > +/// capacity of the vector (the number of elements that currently fit into the vector), it's length > +/// (the number of elements that are currently stored in the vector) and the `Allocator` type used > +/// to allocate (and free) the backing buffer. > +/// > +/// A [`Vec`] can be deconstructed into and (re-)constructed from it's previously named raw parts > +/// and manually modified. > +/// > +/// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements > +/// are added to the vector. > +/// > +/// # Invariants > +/// > +/// - `self.ptr` is always properly aligned and either points to memory allocated with `A` or, for > +/// zero-sized types, is a dangling, well aligned pointer. > +/// > +/// - `self.len` always represents the exact number of elements stored in the vector. > +/// > +/// - `self.cap` represents the absolute number of elements that can be stored within the vector > +/// without re-allocation. However, it is legal for the backing buffer to be larger than > +/// `size_of<T>` times the capacity. > +/// > +/// - The `Allocator` type `A` of the vector is the exact same `Allocator` type the backing buffer > +/// was allocated with (and must be freed with). > +pub struct Vec<T, A: Allocator> { > + ptr: NonNull<T>, > + /// Represents the actual buffer size as `cap` times `size_of::<T>` bytes. > + /// > + /// Note: This isn't quite the same as `Self::capacity`, which in contrast returns the number of > + /// elements we can still store without reallocating. > + /// > + /// # Invariants > + /// > + /// `cap` must be in the `0..=isize::MAX` range. > + cap: usize, > + len: usize, > + _p: PhantomData<A>, > +} [...] > + /// Appends an element to the back of the [`Vec`] instance. > + /// > + /// # Examples > + /// > + /// ``` > + /// let mut v = KVec::new(); > + /// v.push(1, GFP_KERNEL)?; > + /// assert_eq!(&v, &[1]); > + /// > + /// v.push(2, GFP_KERNEL)?; > + /// assert_eq!(&v, &[1, 2]); > + /// # Ok::<(), Error>(()) > + /// ``` > + pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> { > + Vec::reserve(self, 1, flags)?; > + > + // SAFETY: > + // - `self.len` is smaller than `self.capacity` and hence, the resulting pointer is > + // guaranteed to be part of the same allocated object. > + // - `self.len` can not overflow `isize`. > + let ptr = unsafe { self.as_mut_ptr().add(self.len) }; > + > + // SAFETY: > + // - `ptr` is properly aligned and valid for writes. > + unsafe { core::ptr::write(ptr, v) }; Why not use `self.spare_capacity_mut()[0].write(v);`? If you want to avoid the bounds check, you can do let first = self.spare_capacity_mut().first(); // SAFETY: the call to `Vec::reserve` above ensures that `spare_capacity_mut()` is non-empty. unsafe { first.unwrap_unchecked() }.write(v); > + > + // SAFETY: We just initialised the first spare entry, so it is safe to increase the length > + // by 1. We also know that the new length is <= capacity because of the previous call to > + // `reserve` above. > + unsafe { self.set_len(self.len() + 1) }; > + Ok(()) > + } > + > + /// Creates a new [`Vec`] instance with at least the given capacity. > + /// > + /// # Examples > + /// > + /// ``` > + /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?; > + /// > + /// assert!(v.capacity() >= 20); > + /// # Ok::<(), Error>(()) > + /// ``` > + pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> { > + let mut v = Vec::new(); > + > + Self::reserve(&mut v, capacity, flags)?; > + > + Ok(v) > + } > + > + /// Pushes clones of the elements of slice into the [`Vec`] instance. > + /// > + /// # Examples > + /// > + /// ``` > + /// let mut v = KVec::new(); > + /// v.push(1, GFP_KERNEL)?; > + /// > + /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?; > + /// assert_eq!(&v, &[1, 20, 30, 40]); > + /// > + /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?; > + /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]); > + /// # Ok::<(), Error>(()) > + /// ``` > + pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError> > + where > + T: Clone, This method can be moved into the other impl block below, it already has the `T: Clone` bound. > + { > + self.reserve(other.len(), flags)?; > + for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) { > + slot.write(item.clone()); > + } > + > + // SAFETY: > + // - `other.len()` spare entries have just been initialized, so it is safe to increase > + // the length by the same number. > + // - `self.len() + other.len() <= self.capacity()` is guaranteed by the preceding `reserve` > + // call. > + unsafe { self.set_len(self.len() + other.len()) }; > + Ok(()) > + } > + > + /// Creates a Vec<T, A> from a pointer, a length and a capacity using the allocator `A`. > + /// > + /// # Examples > + /// > + /// ``` > + /// let mut v = kernel::kvec![1, 2, 3]?; > + /// v.reserve(1, GFP_KERNEL)?; > + /// > + /// let (mut ptr, mut len, cap) = v.into_raw_parts(); > + /// > + /// // SAFETY: We've just reserved memory for another element. > + /// unsafe { ptr.add(len).write(4) }; > + /// len += 1; > + /// > + /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and > + /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it > + /// // from the exact same raw parts. > + /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) }; > + /// > + /// assert_eq!(v, [1, 2, 3, 4]); > + /// > + /// # Ok::<(), Error>(()) > + /// ``` > + /// > + /// # Safety > + /// > + /// If `T` is a ZST: > + /// > + /// - `ptr` must be a dangling, well aligned pointer. > + /// > + /// Otherwise: > + /// > + /// - `ptr` must have been allocated with the allocator `A`. > + /// - `ptr` must satisfy or exceed the alignment requirements of `T`. > + /// - `ptr` must point to memory with a size of at least `size_of::<T>() * capacity`. > + /// bytes. > + /// - The allocated size in bytes must not be larger than `isize::MAX`. > + /// - `length` must be less than or equal to `capacity`. > + /// - The first `length` elements must be initialized values of type `T`. > + /// > + /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for > + /// `cap` and `len`. > + pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self { > + let cap = if Self::is_zst() { 0 } else { capacity }; > + > + Self { > + // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid > + // memory allocation, allocated with `A`. > + ptr: unsafe { NonNull::new_unchecked(ptr) }, > + cap, > + len: length, > + _p: PhantomData::<A>, > + } Would be nice to have `debug_assert!(length <= capacity)` here. But feel free to make that a good-first-issue instead of including it in the next version. (there are probably more asserts elsewhere) > + } > + > + /// Consumes the `Vec<T, A>` and returns its raw components `pointer`, `length` and `capacity`. > + /// > + /// This will not run the destructor of the contained elements and for non-ZSTs the allocation > + /// will stay alive indefinitely. Use [`Vec::from_raw_parts`] to recover the [`Vec`], drop the > + /// elements and free the allocation, if any. > + pub fn into_raw_parts(self) -> (*mut T, usize, usize) { > + let mut me = ManuallyDrop::new(self); > + let len = me.len(); > + let capacity = me.capacity(); > + let ptr = me.as_mut_ptr(); > + (ptr, len, capacity) > + } [...] > +macro_rules! impl_slice_eq { > + ([$($vars:tt)*] $lhs:ty, $rhs:ty) => { You could wrap the entire pattern in "$()*", same for the entire body and then... > + impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs > + where > + T: PartialEq<U>, > + { > + #[inline] > + fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] } > + } > + } > +} > + > +impl_slice_eq! { [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2> } > +impl_slice_eq! { [A: Allocator] Vec<T, A>, &[U] } > +impl_slice_eq! { [A: Allocator] Vec<T, A>, &mut [U] } > +impl_slice_eq! { [A: Allocator] &[T], Vec<U, A> } > +impl_slice_eq! { [A: Allocator] &mut [T], Vec<U, A> } > +impl_slice_eq! { [A: Allocator] Vec<T, A>, [U] } > +impl_slice_eq! { [A: Allocator] [T], Vec<U, A> } > +impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, [U; N] } > +impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, &[U; N] } ...we could have a single `impl_slice_eq` invocation here: impl_slice_eq! { [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2> [A: Allocator] Vec<T, A>, &[U] [A: Allocator] Vec<T, A>, &mut [U] [A: Allocator] &[T], Vec<U, A> [A: Allocator] &mut [T], Vec<U, A> [A: Allocator] Vec<T, A>, [U] [A: Allocator] [T], Vec<U, A> [A: Allocator, const N: usize] Vec<T, A>, [U; N] [A: Allocator, const N: usize] Vec<T, A>, &[U; N] } Not a huge improvement, but I think it makes it a bit nicer to read. --- Cheers, Benno > diff --git a/rust/kernel/prelude.rs b/rust/kernel/prelude.rs > index d5f2fe42d093..80223cdaa485 100644 > --- a/rust/kernel/prelude.rs > +++ b/rust/kernel/prelude.rs > @@ -14,7 +14,7 @@ > #[doc(no_inline)] > pub use core::pin::Pin; > > -pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, VBox}; > +pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, KVVec, KVec, VBox, VVec}; > > #[doc(no_inline)] > pub use alloc::vec::Vec; > -- > 2.46.0 >