Re: [PATCH, RFC 7/9] thp: implement splitting pmd for huge zero page

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On Thu, Aug 09, 2012 at 12:08:18PM +0300, Kirill A. Shutemov wrote:
> +static void __split_huge_zero_page_pmd(struct mm_struct *mm, pmd_t *pmd,
> +		unsigned long address)
> +{
> +	pgtable_t pgtable;
> +	pmd_t _pmd;
> +	unsigned long haddr = address & HPAGE_PMD_MASK;
> +	struct vm_area_struct *vma;
> +	int i;
> +
> +	vma = find_vma(mm, address);
> +	VM_BUG_ON(vma == NULL);

I think you can use BUG_ON here just in case but see below how I would
change it.

> +	pmdp_clear_flush_notify(vma, haddr, pmd);
> +	/* leave pmd empty until pte is filled */
> +
> +	pgtable = get_pmd_huge_pte(mm);
> +	pmd_populate(mm, &_pmd, pgtable);
> +
> +	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
> +		pte_t *pte, entry;
> +		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
> +		entry = pte_mkspecial(entry);
> +		pte = pte_offset_map(&_pmd, haddr);
> +		VM_BUG_ON(!pte_none(*pte));
> +		set_pte_at(mm, haddr, pte, entry);
> +		pte_unmap(pte);
> +	}
> +	smp_wmb(); /* make pte visible before pmd */
> +	pmd_populate(mm, pmd, pgtable);
> +}
> +

The last pmd_populate will corrupt memory.

See the comment in __split_huge_page_splitting. If you set it to none
at any given time, a new page fault will instantiate a hugepmd
thinking it's the first fault and then you'll overwrite it leaking
memory and corrupting userland.

The caller may be holding the mmap_sem in read mode too (pagewalk is
an example). The PSE bit must also remain on at all times.

The non present bit must be clear and a tlb flush must happen before
the final pmd_populate with the regular pmd to avoid tripping machine
checks on some CPU (to avoid a 4k and 2m tlb to appear for the same
vaddr).

I think you should replace pmdp_clear_flush_notify with:

  	    	pmdp_splitting_flush_notify(vma, haddr, pmd);

then build the 4k zero pages in the loop using the temporary _pmd set with
pmd_populate(&_pmd) and then:


		/*
		 * Up to this point the pmd is present and huge and
		 * userland has the whole access to the hugepage
		 * during the split (which happens in place). If we
		 * overwrite the pmd with the not-huge version
		 * pointing to the pte here (which of course we could
		 * if all CPUs were bug free), userland could trigger
		 * a small page size TLB miss on the small sized TLB
		 * while the hugepage TLB entry is still established
		 * in the huge TLB. Some CPU doesn't like that. See
		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
		 * Erratum 383 on page 93. Intel should be safe but is
		 * also warns that it's only safe if the permission
		 * and cache attributes of the two entries loaded in
		 * the two TLB is identical (which should be the case
		 * here). But it is generally safer to never allow
		 * small and huge TLB entries for the same virtual
		 * address to be loaded simultaneously. So instead of
		 * doing "pmd_populate(); flush_tlb_range();" we first
		 * mark the current pmd notpresent (atomically because
		 * here the pmd_trans_huge and pmd_trans_splitting
		 * must remain set at all times on the pmd until the
		 * split is complete for this pmd), then we flush the
		 * SMP TLB and finally we write the non-huge version
		 * of the pmd entry with pmd_populate.
		 */
		set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
		pmd_populate(mm, pmd, pgtable);

note address above is actually haddr aligned (generated by
vma_address(page, vma) where page is a thp page)

> +	if (is_huge_zero_pmd(*pmd)) {
> +		__split_huge_zero_page_pmd(mm, pmd, address);

This will work fine but it's a bit sad having to add "address" at
every call, just to run a find_vma(). The only place that doesn't have
a vma already on the caller stack is actually pagewalk, all other
places already have a vma on the stack without having to find it with
the rbtree.

I think it may be better to change the param to
split_huge_page_pmd(vma, pmd).

Then have standard split_huge_page_pmd obtain the mm with vma->vm_mm
(most callers already calles it with split_huge_page_pmd(vma->vm_mm)
so it won't alter the cost to do vma->vm_mm in caller or callee).

split_huge_page_address also should take the vma (all callers are
invoking it as split_huge_page_address(vma->vm_mm) so it'll be zero
cost change).

Then we can add a split_huge_page_pmd_mm(mm, address, pmd) or
split_huge_page_pmd_address(mm, address, pmd) (call it as you
prefer...) only for the pagewalk caller that will do the find_vma and
BUG_ON if it's not found.

In that new split_huge_page_pmd_mm you can also add a BUG_ON checking
vma->vm_start to be <= haddr and vma->vm_end >= haddr+HPAGE_PMD_SIZE
in addition to BUG_ON(!vma) above, for more robustness. I'm not aware
of any place calling it without mmap_sem hold at least for reading
and the vma must be stable, but more debug checks won't hurt.

Thanks!
Andrea

--
To unsubscribe, send a message with 'unsubscribe linux-mm' in
the body to majordomo@xxxxxxxxx.  For more info on Linux MM,
see: http://www.linux-mm.org/ .
Don't email: <a href=mailto:"dont@xxxxxxxxx";> email@xxxxxxxxx </a>


[Index of Archives]     [Linux ARM Kernel]     [Linux ARM]     [Linux Omap]     [Fedora ARM]     [IETF Annouce]     [Bugtraq]     [Linux]     [Linux OMAP]     [Linux MIPS]     [ECOS]     [Asterisk Internet PBX]     [Linux API]