[PATCH v6 01/26] rust: alloc: add `Allocator` trait

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



Add a kernel specific `Allocator` trait, that in contrast to the one in
Rust's core library doesn't require unstable features and supports GFP
flags.

Subsequent patches add the following trait implementors: `Kmalloc`,
`Vmalloc` and `KVmalloc`.

Reviewed-by: Alice Ryhl <aliceryhl@xxxxxxxxxx>
Signed-off-by: Danilo Krummrich <dakr@xxxxxxxxxx>
---
 rust/kernel/alloc.rs | 102 +++++++++++++++++++++++++++++++++++++++++++
 1 file changed, 102 insertions(+)

diff --git a/rust/kernel/alloc.rs b/rust/kernel/alloc.rs
index 1966bd407017..9932f21b0539 100644
--- a/rust/kernel/alloc.rs
+++ b/rust/kernel/alloc.rs
@@ -11,6 +11,7 @@
 /// Indicates an allocation error.
 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
 pub struct AllocError;
+use core::{alloc::Layout, ptr::NonNull};
 
 /// Flags to be used when allocating memory.
 ///
@@ -86,3 +87,104 @@ pub mod flags {
     /// small allocations.
     pub const GFP_NOWAIT: Flags = Flags(bindings::GFP_NOWAIT);
 }
+
+/// The kernel's [`Allocator`] trait.
+///
+/// An implementation of [`Allocator`] can allocate, re-allocate and free memory buffer described
+/// via [`Layout`].
+///
+/// [`Allocator`] is designed to be implemented as a ZST; [`Allocator`] functions do not operate on
+/// an object instance.
+///
+/// In order to be able to support `#[derive(SmartPointer)]` later on, we need to avoid a design
+/// that requires an `Allocator` to be instantiated, hence its functions must not contain any kind
+/// of `self` parameter.
+///
+/// # Safety
+///
+/// A memory allocation returned from an allocator must remain valid until it is explicitly freed.
+///
+/// Any pointer to a valid memory allocation must be valid to be passed to any other [`Allocator`]
+/// function of the same type.
+///
+/// Implementers must ensure that all trait functions abide by the guarantees documented in the
+/// `# Guarantees` sections.
+pub unsafe trait Allocator {
+    /// Allocate memory based on `layout` and `flags`.
+    ///
+    /// On success, returns a buffer represented as `NonNull<[u8]>` that satisfies the layout
+    /// constraints (i.e. minimum size and alignment as specified by `layout`).
+    ///
+    /// This function is equivalent to `realloc` when called with `None`.
+    ///
+    /// # Guarantees
+    ///
+    /// When the return value is `Ok(ptr)`, then `ptr` is
+    /// - valid for reads and writes for `layout.size()` bytes, until it is passed to
+    ///   [`Allocator::free`] or [`Allocator::realloc`],
+    /// - aligned to `layout.align()`,
+    ///
+    /// Additionally, `Flags` are honored as documented in
+    /// <https://docs.kernel.org/core-api/mm-api.html#mm-api-gfp-flags>.
+    fn alloc(layout: Layout, flags: Flags) -> Result<NonNull<[u8]>, AllocError> {
+        // SAFETY: Passing `None` to `realloc` is valid by it's safety requirements and asks for a
+        // new memory allocation.
+        unsafe { Self::realloc(None, layout, flags) }
+    }
+
+    /// Re-allocate an existing memory allocation to satisfy the requested `layout`.
+    ///
+    /// If the requested size is zero, `realloc` behaves equivalent to `free`.
+    ///
+    /// If the requested size is larger than the size of the existing allocation, a successful call
+    /// to `realloc` guarantees that the new or grown buffer has at least `Layout::size` bytes, but
+    /// may also be larger.
+    ///
+    /// If the requested size is smaller than the size of the existing allocation, `realloc` may or
+    /// may not shrink the buffer; this is implementation specific to the allocator.
+    ///
+    /// On allocation failure, the existing buffer, if any, remains valid.
+    ///
+    /// The buffer is represented as `NonNull<[u8]>`.
+    ///
+    /// # Safety
+    ///
+    /// If `ptr == Some(p)`, then `p` must point to an existing and valid memory allocation created
+    /// by this allocator. The alignment encoded in `layout` must be smaller than or equal to the
+    /// alignment requested in the previous `alloc` or `realloc` call of the same allocation.
+    ///
+    /// Additionally, `ptr` is allowed to be `None`; in this case a new memory allocation is
+    /// created.
+    ///
+    /// # Guarantees
+    ///
+    /// This function has the same guarantees as [`Allocator::alloc`]. When `ptr == Some(p)`, then
+    /// it additionally guarantees that:
+    /// - the contents of the memory pointed to by `p` are preserved up to the lesser of the new
+    ///   and old size,
+    ///   and old size, i.e.
+    ///   `ret_ptr[0..min(layout.size(), old_size)] == p[0..min(layout.size(), old_size)]`, where
+    ///   `old_size` is the size of the allocation that `p` points at.
+
+    /// - when the return value is `Err(AllocError)`, then `p` is still valid.
+    unsafe fn realloc(
+        ptr: Option<NonNull<u8>>,
+        layout: Layout,
+        flags: Flags,
+    ) -> Result<NonNull<[u8]>, AllocError>;
+
+    /// Free an existing memory allocation.
+    ///
+    /// # Safety
+    ///
+    /// `ptr` must point to an existing and valid memory allocation created by this `Allocator` and
+    /// must not be a dangling pointer.
+    ///
+    /// The memory allocation at `ptr` must never again be read from or written to.
+    unsafe fn free(ptr: NonNull<u8>) {
+        // SAFETY: The caller guarantees that `ptr` points at a valid allocation created by this
+        // allocator. We are passing a `Layout` with the smallest possible alignment, so it is
+        // smaller than or equal to the alignment previously used with this allocation.
+        let _ = unsafe { Self::realloc(Some(ptr), Layout::new::<()>(), Flags(0)) };
+    }
+}
-- 
2.46.0





[Index of Archives]     [Linux ARM Kernel]     [Linux ARM]     [Linux Omap]     [Fedora ARM]     [IETF Annouce]     [Bugtraq]     [Linux OMAP]     [Linux MIPS]     [eCos]     [Asterisk Internet PBX]     [Linux API]

  Powered by Linux