`Vec` provides a contiguous growable array type (such as `Vec`) with contents allocated with the kernel's allocators (e.g. `Kmalloc`, `Vmalloc` or `KVmalloc`). In contrast to Rust's `Vec` type, the kernel `Vec` type considers the kernel's GFP flags for all appropriate functions, always reports allocation failures through `Result<_, AllocError>` and remains independent from unstable features. Signed-off-by: Danilo Krummrich <dakr@xxxxxxxxxx> --- rust/kernel/alloc.rs | 6 + rust/kernel/alloc/kbox.rs | 16 +- rust/kernel/alloc/kvec.rs | 613 ++++++++++++++++++++++++++++++++++++++ rust/kernel/prelude.rs | 2 +- 4 files changed, 635 insertions(+), 2 deletions(-) create mode 100644 rust/kernel/alloc/kvec.rs diff --git a/rust/kernel/alloc.rs b/rust/kernel/alloc.rs index 47cab5bd803e..4d7190594076 100644 --- a/rust/kernel/alloc.rs +++ b/rust/kernel/alloc.rs @@ -5,6 +5,7 @@ #[cfg(not(any(test, testlib)))] pub mod allocator; pub mod kbox; +pub mod kvec; pub mod vec_ext; #[cfg(any(test, testlib))] @@ -18,6 +19,11 @@ pub use self::kbox::KVBox; pub use self::kbox::VBox; +pub use self::kvec::KVVec; +pub use self::kvec::KVec; +pub use self::kvec::VVec; +pub use self::kvec::Vec; + /// Indicates an allocation error. #[derive(Copy, Clone, PartialEq, Eq, Debug)] pub struct AllocError; diff --git a/rust/kernel/alloc/kbox.rs b/rust/kernel/alloc/kbox.rs index 67bdfc0712d2..d67f97550224 100644 --- a/rust/kernel/alloc/kbox.rs +++ b/rust/kernel/alloc/kbox.rs @@ -2,7 +2,7 @@ //! Implementation of [`Box`]. -use super::{AllocError, Allocator, Flags}; +use super::{AllocError, Allocator, Flags, Vec}; use core::fmt; use core::marker::PhantomData; use core::mem::ManuallyDrop; @@ -183,6 +183,20 @@ pub fn into_pin(b: Self) -> Pin<Self> { } } +impl<T, A, const N: usize> Box<[T; N], A> +where + A: Allocator, +{ + /// Convert a `Box<[T, N], A>` to a `Vec<T, A>`. + pub fn into_vec(b: Self) -> Vec<T, A> { + let len = b.len(); + unsafe { + let ptr = Self::into_raw(b); + Vec::from_raw_parts(ptr as _, len, len) + } + } +} + impl<T, A> Box<MaybeUninit<T>, A> where A: Allocator, diff --git a/rust/kernel/alloc/kvec.rs b/rust/kernel/alloc/kvec.rs new file mode 100644 index 000000000000..351c4f1702db --- /dev/null +++ b/rust/kernel/alloc/kvec.rs @@ -0,0 +1,613 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! Implementation of [`Vec`]. + +use super::{AllocError, Allocator, Flags}; +use core::{ + fmt, + marker::PhantomData, + mem::{ManuallyDrop, MaybeUninit}, + ops::Deref, + ops::DerefMut, + ops::Index, + ops::IndexMut, + ptr::NonNull, + slice, + slice::SliceIndex, +}; + +/// Create a [`Vec`] containing the arguments. +/// +/// # Examples +/// +/// ``` +/// let mut v = kernel::kvec![]; +/// v.push(1, GFP_KERNEL)?; +/// assert_eq!(v, [1]); +/// +/// let mut v = kernel::kvec![1; 3]?; +/// v.push(4, GFP_KERNEL)?; +/// assert_eq!(v, [1, 1, 1, 4]); +/// +/// let mut v = kernel::kvec![1, 2, 3]?; +/// v.push(4, GFP_KERNEL)?; +/// assert_eq!(v, [1, 2, 3, 4]); +/// +/// # Ok::<(), Error>(()) +/// ``` +#[macro_export] +macro_rules! kvec { + () => ( + { + $crate::alloc::KVec::new() + } + ); + ($elem:expr; $n:expr) => ( + { + $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL) + } + ); + ($($x:expr),+ $(,)?) => ( + { + match $crate::alloc::KBox::new([$($x),+], GFP_KERNEL) { + Ok(b) => Ok($crate::alloc::KBox::into_vec(b)), + Err(e) => Err(e), + } + } + ); +} + +/// The kernel's [`Vec`] type. +/// +/// A contiguous growable array type with contents allocated with the kernel's allocators (e.g. +/// `Kmalloc`, `Vmalloc` or `KVmalloc`), written `Vec<T, A>`. +/// +/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For +/// the most common allocators the type aliases `KVec`, `VVec` and `KVVec` exist. +/// +/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated. +/// +/// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the +/// capacity of the vector (the number of elements that currently fit into the vector), it's length +/// (the number of elements that are currently stored in the vector) and the `Allocator` type used +/// to allocate (and free) the backing buffer. +/// +/// A [`Vec`] can be deconstructed into and (re-)constructed from it's previously named raw parts +/// and manually modified. +/// +/// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements +/// are added to the vector. +/// +/// # Invariants +/// +/// The [`Vec`] backing buffer's pointer is always properly aligned and either points to memory +/// allocated with `A` or, for zero-sized types, is a dangling pointer. +/// +/// The length of the vector always represents the exact number of elements stored in the vector. +/// +/// The capacity of the vector always represents the absolute number of elements that can be stored +/// within the vector without re-allocation. However, it is legal for the backing buffer to be +/// larger than `size_of<T>` times the capacity. +/// +/// The `Allocator` type `A` of the vector is the exact same `Allocator` type the backing buffer was +/// allocated with (and must be freed with). +pub struct Vec<T, A: Allocator> { + ptr: NonNull<T>, + /// Represents the actual buffer size as `cap` times `size_of::<T>` bytes. + /// + /// Note: This isn't quite the same as `Self::capacity`, which in contrast returns the number of + /// elements we can still store without reallocating. + /// + /// # Invariants + /// + /// `cap` must be in the `0..=isize::MAX` range. + cap: usize, + len: usize, + _p: PhantomData<A>, +} + +/// Type alias for `Vec` with a `Kmalloc` allocator. +/// +/// # Examples +/// +/// ``` +/// let mut v = KVec::new(); +/// v.push(1, GFP_KERNEL)?; +/// assert_eq!(&v, &[1]); +/// +/// # Ok::<(), Error>(()) +/// ``` +pub type KVec<T> = Vec<T, super::allocator::Kmalloc>; + +/// Type alias for `Vec` with a `Vmalloc` allocator. +/// +/// # Examples +/// +/// ``` +/// let mut v = VVec::new(); +/// v.push(1, GFP_KERNEL)?; +/// assert_eq!(&v, &[1]); +/// +/// # Ok::<(), Error>(()) +/// ``` +pub type VVec<T> = Vec<T, super::allocator::Vmalloc>; + +/// Type alias for `Vec` with a `KVmalloc` allocator. +/// +/// # Examples +/// +/// ``` +/// let mut v = KVVec::new(); +/// v.push(1, GFP_KERNEL)?; +/// assert_eq!(&v, &[1]); +/// +/// # Ok::<(), Error>(()) +/// ``` +pub type KVVec<T> = Vec<T, super::allocator::KVmalloc>; + +// SAFETY: `Vec` is `Send` if `T` is `Send` because the data referenced by `self.ptr` is unaliased. +unsafe impl<T, A> Send for Vec<T, A> +where + T: Send, + A: Allocator, +{ +} + +// SAFETY: `Vec` is `Sync` if `T` is `Sync` because the data referenced by `self.ptr` is unaliased. +unsafe impl<T, A> Sync for Vec<T, A> +where + T: Send, + A: Allocator, +{ +} + +impl<T, A> Vec<T, A> +where + A: Allocator, +{ + #[inline] + fn is_zst() -> bool { + core::mem::size_of::<T>() == 0 + } + + /// Returns the number of elements that can be stored within the vector without allocating + /// additional memory. + pub fn capacity(&self) -> usize { + if Self::is_zst() { + usize::MAX + } else { + self.cap + } + } + + /// Returns the number of elements stored within the vector. + #[inline] + pub fn len(&self) -> usize { + self.len + } + + /// Forcefully sets `self.len` to `new_len`. + /// + /// # Safety + /// + /// - `new_len` must be less than or equal to [`Self::capacity`]. + /// - If `new_len` is greater than `self.len`, all elements within the interval + /// [`self.len`,`new_len`] must be initialized. + #[inline] + pub unsafe fn set_len(&mut self, new_len: usize) { + self.len = new_len; + } + + /// Returns a slice of the entire vector. + /// + /// Equivalent to `&s[..]`. + #[inline] + pub fn as_slice(&self) -> &[T] { + self + } + + /// Returns a mutable slice of the entire vector. + /// + /// Equivalent to `&mut s[..]`. + #[inline] + pub fn as_mut_slice(&mut self) -> &mut [T] { + self + } + + /// Returns a mutable raw pointer to the vector's backing buffer, or, if `T` is a ZST, a + /// dangling raw pointer. + #[inline] + pub fn as_mut_ptr(&self) -> *mut T { + self.ptr.as_ptr() + } + + /// Returns a raw pointer to the vector's backing buffer, or, if `T` is a ZST, a dangling raw + /// pointer. + #[inline] + pub fn as_ptr(&self) -> *const T { + self.as_mut_ptr() + } + + /// Returns `true` if the vector contains no elements, `false` otherwise. + /// + /// # Examples + /// + /// ``` + /// let mut v = KVec::new(); + /// assert!(v.is_empty()); + /// + /// v.push(1, GFP_KERNEL); + /// assert!(!v.is_empty()); + /// ``` + #[inline] + pub fn is_empty(&self) -> bool { + self.len() == 0 + } + + /// Creates a new, empty Vec<T, A>. + /// + /// This method does not allocate by itself. + #[inline] + pub const fn new() -> Self { + Self { + ptr: NonNull::dangling(), + cap: 0, + len: 0, + _p: PhantomData::<A>, + } + } + + /// Returns a slice of `MaybeUninit<T>` for the remaining spare capacity of the vector. + pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] { + // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated + // and valid, but uninitialized. + unsafe { + slice::from_raw_parts_mut( + self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>, + self.capacity() - self.len, + ) + } + } + + /// Appends an element to the back of the [`Vec`] instance. + /// + /// # Examples + /// + /// ``` + /// let mut v = KVec::new(); + /// v.push(1, GFP_KERNEL)?; + /// assert_eq!(&v, &[1]); + /// + /// v.push(2, GFP_KERNEL)?; + /// assert_eq!(&v, &[1, 2]); + /// # Ok::<(), Error>(()) + /// ``` + pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> { + Vec::reserve(self, 1, flags)?; + let s = self.spare_capacity_mut(); + s[0].write(v); + + // SAFETY: We just initialised the first spare entry, so it is safe to increase the length + // by 1. We also know that the new length is <= capacity because of the previous call to + // `reserve` above. + unsafe { self.set_len(self.len() + 1) }; + Ok(()) + } + + /// Creates a new [`Vec`] instance with at least the given capacity. + /// + /// # Examples + /// + /// ``` + /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?; + /// + /// assert!(v.capacity() >= 20); + /// # Ok::<(), Error>(()) + /// ``` + pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> { + let mut v = Vec::new(); + + Self::reserve(&mut v, capacity, flags)?; + + Ok(v) + } + + /// Pushes clones of the elements of slice into the [`Vec`] instance. + /// + /// # Examples + /// + /// ``` + /// let mut v = KVec::new(); + /// v.push(1, GFP_KERNEL)?; + /// + /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?; + /// assert_eq!(&v, &[1, 20, 30, 40]); + /// + /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?; + /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]); + /// # Ok::<(), Error>(()) + /// ``` + pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError> + where + T: Clone, + { + self.reserve(other.len(), flags)?; + for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) { + slot.write(item.clone()); + } + + // SAFETY: We just initialised the `other.len()` spare entries, so it is safe to increase + // the length by the same amount. We also know that the new length is <= capacity because + // of the previous call to `reserve` above. + unsafe { self.set_len(self.len() + other.len()) }; + Ok(()) + } + + /// Creates a Vec<T, A> from a pointer, a length and a capacity using the allocator `A`. + /// + /// # Safety + /// + /// If `T` is a ZST: + /// + /// - `ptr` must be a dangling pointer. + /// - `capacity` must be zero. + /// - `length` must be smaller than or equal to `usize::MAX`. + /// + /// Otherwise: + /// + /// - `ptr` must have been allocated with the allocator `A`. + /// - `ptr` must satisfy or exceed the alignment requirements of `T`. + /// - `ptr` must point to memory with a size of at least `size_of::<T>` times the `capacity` + /// bytes. + /// - The allocated size in bytes must not be larger than `isize::MAX`. + /// - `length` must be less than or equal to `capacity`. + /// - The first `length` elements must be initialized values of type `T`. + /// + /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for + /// `cap` and `len`. + /// + /// # Examples + /// + /// ``` + /// let mut v = kernel::kvec![1, 2, 3]?; + /// v.reserve(1, GFP_KERNEL)?; + /// + /// let (mut ptr, mut len, cap) = v.into_raw_parts(); + /// + /// // SAFETY: We've just reserved memory for another element. + /// unsafe { ptr.add(len).write(4) }; + /// len += 1; + /// + /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and + /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it + /// // from the exact same raw parts. + /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) }; + /// + /// assert_eq!(v, [1, 2, 3, 4]); + /// + /// # Ok::<(), Error>(()) + /// ``` + pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self { + let cap = if Self::is_zst() { 0 } else { capacity }; + + Self { + // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid + // memory allocation, allocated with `A`. + ptr: unsafe { NonNull::new_unchecked(ptr) }, + cap, + len: length, + _p: PhantomData::<A>, + } + } + + /// Consumes the `Vec<T, A>` and returns its raw components `pointer`, `length` and `capacity`. + /// + /// This will not run the destructor of the contained elements and for non-ZSTs the allocation + /// will stay alive indefinitely. Use [`Vec::from_raw_parts`] to recover the [`Vec`], drop the + /// elements and free the allocation, if any. + pub fn into_raw_parts(self) -> (*mut T, usize, usize) { + let me = ManuallyDrop::new(self); + let len = me.len(); + let capacity = me.capacity(); + let ptr = me.as_mut_ptr(); + (ptr, len, capacity) + } + + /// Ensures that the capacity exceeds the length by at least `additional` + /// elements. + /// + /// # Examples + /// + /// ``` + /// let mut v = KVec::new(); + /// v.push(1, GFP_KERNEL)?; + /// + /// v.reserve(10, GFP_KERNEL)?; + /// let cap = v.capacity(); + /// assert!(cap >= 10); + /// + /// v.reserve(10, GFP_KERNEL)?; + /// let new_cap = v.capacity(); + /// assert_eq!(new_cap, cap); + /// + /// # Ok::<(), Error>(()) + /// ``` + pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> { + let len = self.len(); + let cap = self.capacity(); + + if cap - len >= additional { + return Ok(()); + } + + if Self::is_zst() { + // The capacity is already `usize::MAX` for SZTs, we can't go higher. + return Err(AllocError); + } + + // We know `cap` is <= `isize::MAX` because of it's type invariant. So the multiplication by + // two won't overflow. + let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?); + let layout = core::alloc::Layout::array::<T>(new_cap).map_err(|_| AllocError)?; + + // We need to make sure that `ptr` is either NULL or comes from a previous call to + // `realloc_flags`. A `Vec<T, A>`'s `ptr` value is not guaranteed to be NULL and might be + // dangling after being created with `Vec::new`. Instead, we can rely on `Vec<T, A>`'s + // capacity to be zero if no memory has been allocated yet. + let ptr = if cap == 0 { + None + } else { + Some(self.ptr.cast()) + }; + + // SAFETY: `ptr` is valid because it's either `None` or comes from a previous call to + // `A::realloc`. We also verified that the type is not a ZST. + let ptr = unsafe { A::realloc(ptr, layout, flags)? }; + + self.ptr = ptr.cast(); + + // INVARIANT: `Layout::array` fails if the resulting byte size is greater than `isize::MAX`. + self.cap = new_cap; + + Ok(()) + } +} + +impl<T: Clone, A: Allocator> Vec<T, A> { + /// Extend the vector by `n` clones of value. + pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> { + self.reserve(n, flags)?; + + let spare = self.spare_capacity_mut(); + + for item in spare.iter_mut().take(n - 1) { + item.write(value.clone()); + } + + // We can write the last element directly without cloning needlessly. + spare[n - 1].write(value); + + // SAFETY: `self.reserve` not bailing out with an error guarantees that we're not + // exceeding the capacity of this `Vec`. + unsafe { self.set_len(self.len() + n) }; + + Ok(()) + } + + /// Create a new `Vec<T, A> and extend it by `n` clones of `value`. + pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> { + let mut v = Self::with_capacity(n, flags)?; + + v.extend_with(n, value, flags)?; + + Ok(v) + } +} + +impl<T, A> Drop for Vec<T, A> +where + A: Allocator, +{ + fn drop(&mut self) { + // SAFETY: We need to drop the vector's elements in place, before we free the backing + // memory. + unsafe { + core::ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut( + self.as_mut_ptr(), + self.len, + )) + }; + + // If `cap == 0` we never allocated any memory in the first place. + if self.cap != 0 { + // SAFETY: `self.ptr` was previously allocated with `A`. + unsafe { A::free(self.ptr.cast()) }; + } + } +} + +impl<T> Default for KVec<T> { + #[inline] + fn default() -> Self { + Self::new() + } +} + +impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + fmt::Debug::fmt(&**self, f) + } +} + +impl<T, A> Deref for Vec<T, A> +where + A: Allocator, +{ + type Target = [T]; + + #[inline] + fn deref(&self) -> &[T] { + // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len` + // initialized elements of type `T`. + unsafe { slice::from_raw_parts(self.as_ptr(), self.len) } + } +} + +impl<T, A> DerefMut for Vec<T, A> +where + A: Allocator, +{ + #[inline] + fn deref_mut(&mut self) -> &mut [T] { + // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len` + // initialized elements of type `T`. + unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) } + } +} + +impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {} + +impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A> +where + A: Allocator, +{ + type Output = I::Output; + + #[inline] + fn index(&self, index: I) -> &Self::Output { + Index::index(&**self, index) + } +} + +impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A> +where + A: Allocator, +{ + #[inline] + fn index_mut(&mut self, index: I) -> &mut Self::Output { + IndexMut::index_mut(&mut **self, index) + } +} + +macro_rules! __impl_slice_eq { + ([$($vars:tt)*] $lhs:ty, $rhs:ty $(where $ty:ty: $bound:ident)?) => { + impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs + where + T: PartialEq<U>, + $($ty: $bound)? + { + #[inline] + fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] } + } + } +} + +__impl_slice_eq! { [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2> } +__impl_slice_eq! { [A: Allocator] Vec<T, A>, &[U] } +__impl_slice_eq! { [A: Allocator] Vec<T, A>, &mut [U] } +__impl_slice_eq! { [A: Allocator] &[T], Vec<U, A> } +__impl_slice_eq! { [A: Allocator] &mut [T], Vec<U, A> } +__impl_slice_eq! { [A: Allocator] Vec<T, A>, [U] } +__impl_slice_eq! { [A: Allocator] [T], Vec<U, A> } +__impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, [U; N] } +__impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, &[U; N] } diff --git a/rust/kernel/prelude.rs b/rust/kernel/prelude.rs index 6bf77577eae7..bb80a43d20fb 100644 --- a/rust/kernel/prelude.rs +++ b/rust/kernel/prelude.rs @@ -14,7 +14,7 @@ #[doc(no_inline)] pub use core::pin::Pin; -pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, VBox}; +pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, KVVec, KVec, VBox, VVec}; #[doc(no_inline)] pub use alloc::vec::Vec; -- 2.45.2