Re: [PATCH RFC] mm/page_alloc: Fix pcp->count race between drain_pages_zone() vs __rmqueue_pcplist()

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On 18.07.24 13:16, Vlastimil Babka (SUSE) wrote:
On 7/16/24 9:39 AM, Li Zhijian wrote:
It's expected that no page should be left in pcp_list after calling
zone_pcp_disable() in offline_pages(). Previously, it's observed that
offline_pages() gets stuck [1] due to some pages remaining in pcp_list.

Cause:
There is a race condition between drain_pages_zone() and __rmqueue_pcplist()
involving the pcp->count variable. See below scenario:

          CPU0                              CPU1
     ----------------                    ---------------
                                       spin_lock(&pcp->lock);
                                       __rmqueue_pcplist() {
zone_pcp_disable() {
                                         /* list is empty */
                                         if (list_empty(list)) {
                                           /* add pages to pcp_list */
                                           alloced = rmqueue_bulk()
   mutex_lock(&pcp_batch_high_lock)
   ...
   __drain_all_pages() {
     drain_pages_zone() {
       /* read pcp->count, it's 0 here */
       count = READ_ONCE(pcp->count)
       /* 0 means nothing to drain */
                                           /* update pcp->count */
                                           pcp->count += alloced << order;
       ...
                                       ...
                                       spin_unlock(&pcp->lock);

In this case, after calling zone_pcp_disable() though, there are still some
pages in pcp_list. And these pages in pcp_list are neither movable nor
isolated, offline_pages() gets stuck as a result.

Solution:
Expand the scope of the pcp->lock to also protect pcp->count in
drain_pages_zone(), ensuring no pages are left in the pcp list.

[1] https://lore.kernel.org/linux-mm/6a07125f-e720-404c-b2f9-e55f3f166e85@xxxxxxxxxxx/

Cc: David Hildenbrand <david@xxxxxxxxxx>
Reported-by: Yao Xingtao <yaoxt.fnst@xxxxxxxxxxx>
Signed-off-by: Li Zhijian <lizhijian@xxxxxxxxxxx>
---
  mm/page_alloc.c | 7 ++++---
  1 file changed, 4 insertions(+), 3 deletions(-)

diff --git a/mm/page_alloc.c b/mm/page_alloc.c
index 9ecf99190ea2..1780df31d5f5 100644
--- a/mm/page_alloc.c
+++ b/mm/page_alloc.c
@@ -2323,16 +2323,17 @@ void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  static void drain_pages_zone(unsigned int cpu, struct zone *zone)
  {
  	struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
-	int count = READ_ONCE(pcp->count);
+	int count;
+ spin_lock(&pcp->lock);
+	count = pcp->count;
  	while (count) {
  		int to_drain = min(count, pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
  		count -= to_drain;
- spin_lock(&pcp->lock);
  		free_pcppages_bulk(zone, to_drain, pcp, 0);
-		spin_unlock(&pcp->lock);
  	}
+	spin_unlock(&pcp->lock);

This way seems to be partially going against the purpose of 55f77df7d715
("mm: page_alloc: control latency caused by zone PCP draining") - the zone
lock hold time will still be limited by the batch, but not the pcp lock
time. It should still be possible to relock between the iterations? To
prevent the race I think the main part is determining pcp->count under the
lock, but release/retake should still be ok if the pcp->count is reread
after relocking.

Agreed, had the smame thing in mind when skimming over this patch.

@Li, with this patch the problems you have been seeing are fully resolved, correct?

--
Cheers,

David / dhildenb





[Index of Archives]     [Linux ARM Kernel]     [Linux ARM]     [Linux Omap]     [Fedora ARM]     [IETF Annouce]     [Bugtraq]     [Linux OMAP]     [Linux MIPS]     [eCos]     [Asterisk Internet PBX]     [Linux API]

  Powered by Linux