On 28.06.24 00:27, Yu Zhao wrote:
While investigating HVO for THPs [1], it turns out that speculative
PFN walkers like compaction can race with vmemmap modifications, e.g.,
CPU 1 (vmemmap modifier) CPU 2 (speculative PFN walker)
------------------------------- ------------------------------
Allocates an LRU folio page1
Sees page1
Frees page1
Allocates a hugeTLB folio page2
(page1 being a tail of page2)
Updates vmemmap mapping page1
get_page_unless_zero(page1)
Even though page1->_refcount is zero after HVO, get_page_unless_zero()
can still try to modify this read-only field, resulting in a crash.
An independent report [2] confirmed this race.
There are two discussed approaches to fix this race:
1. Make RO vmemmap RW so that get_page_unless_zero() can fail without
triggering a PF.
2. Use RCU to make sure get_page_unless_zero() either sees zero
page->_refcount through the old vmemmap or non-zero page->_refcount
through the new one.
The second approach is preferred here because:
1. It can prevent illegal modifications to struct page[] that has been
HVO'ed;
2. It can be generalized, in a way similar to ZERO_PAGE(), to fix
similar races in other places, e.g., arch_remove_memory() on x86
[3], which frees vmemmap mapping offlined struct page[].
While adding synchronize_rcu(), the goal is to be surgical, rather
than optimized. Specifically, calls to synchronize_rcu() on the error
handling paths can be coalesced, but it is not done for the sake of
Simplicity: noticeably, this fix removes ~50% more lines than it adds.
According to the hugetlb_optimize_vmemmap section in
Documentation/admin-guide/sysctl/vm.rst, enabling HVO makes allocating
or freeing hugeTLB pages "~2x slower than before". Having
synchronize_rcu() on top makes those operations even worse, and this
also affects the user interface /proc/sys/vm/nr_overcommit_hugepages.
[1] https://lore.kernel.org/20240229183436.4110845-4-yuzhao@xxxxxxxxxx/
[2] https://lore.kernel.org/917FFC7F-0615-44DD-90EE-9F85F8EA9974@xxxxxxxxx/
[3] https://lore.kernel.org/be130a96-a27e-4240-ad78-776802f57cad@xxxxxxxxxx/
Signed-off-by: Yu Zhao <yuzhao@xxxxxxxxxx>
Acked-by: Muchun Song <muchun.song@xxxxxxxxx>
---
include/linux/page_ref.h | 8 +++++-
mm/hugetlb.c | 53 ++++++----------------------------------
mm/hugetlb_vmemmap.c | 16 ++++++++++++
3 files changed, 30 insertions(+), 47 deletions(-)
diff --git a/include/linux/page_ref.h b/include/linux/page_ref.h
index 490d0ad6e56d..8c236c651d1d 100644
--- a/include/linux/page_ref.h
+++ b/include/linux/page_ref.h
@@ -230,7 +230,13 @@ static inline int folio_ref_dec_return(struct folio *folio)
static inline bool page_ref_add_unless(struct page *page, int nr, int u)
{
- bool ret = atomic_add_unless(&page->_refcount, nr, u);
+ bool ret = false;
+
+ rcu_read_lock();
+ /* avoid writing to the vmemmap area being remapped */
+ if (!page_is_fake_head(page) && page_ref_count(page) != u)
+ ret = atomic_add_unless(&page->_refcount, nr, u);
+ rcu_read_unlock();
The page_is_fake_head() thingy in page_ref.h is a bit suboptimal,
currently it really only works on _refcount. But I get why it is
required right now, hmmm.
(independent, all users of page_ref_add_unless seem to pass u==0, maybe
we should clean that up at some point; hard to imagine other use cases
for refcounts besides "unless 0").
--
Cheers,
David / dhildenb