From: Tangquan Zheng <zhengtangquan@xxxxxxxx> This patch introduces support for zsmalloc to store compressed objects based on multi-pages. Previously, a large folio with nr_pages subpages would undergo compression one by one, each at the granularity of PAGE_SIZE. However, by compressing them at a larger granularity, we can conserve both memory and CPU resources. We define the granularity using a configuration option called ZSMALLOC_MULTI_PAGES_ORDER, with a default value of 4. Consequently, a large folio with 32 subpages will now be divided into 2 parts rather than 32 parts. The introduction of the multi-pages feature necessitates the creation of new size classes to accommodate it. Signed-off-by: Tangquan Zheng <zhengtangquan@xxxxxxxx> Co-developed-by: Barry Song <v-songbaohua@xxxxxxxx> Signed-off-by: Barry Song <v-songbaohua@xxxxxxxx> --- include/linux/zsmalloc.h | 10 +- mm/Kconfig | 18 ++++ mm/zsmalloc.c | 215 +++++++++++++++++++++++++++++---------- 3 files changed, 187 insertions(+), 56 deletions(-) diff --git a/include/linux/zsmalloc.h b/include/linux/zsmalloc.h index a48cd0ffe57d..9fa3e7669557 100644 --- a/include/linux/zsmalloc.h +++ b/include/linux/zsmalloc.h @@ -33,6 +33,14 @@ enum zs_mapmode { */ }; +enum zsmalloc_type { + ZSMALLOC_TYPE_BASEPAGE, +#ifdef CONFIG_ZSMALLOC_MULTI_PAGES + ZSMALLOC_TYPE_MULTI_PAGES, +#endif + ZSMALLOC_TYPE_MAX, +}; + struct zs_pool_stats { /* How many pages were migrated (freed) */ atomic_long_t pages_compacted; @@ -46,7 +54,7 @@ void zs_destroy_pool(struct zs_pool *pool); unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t flags); void zs_free(struct zs_pool *pool, unsigned long obj); -size_t zs_huge_class_size(struct zs_pool *pool); +size_t zs_huge_class_size(struct zs_pool *pool, enum zsmalloc_type type); void *zs_map_object(struct zs_pool *pool, unsigned long handle, enum zs_mapmode mm); diff --git a/mm/Kconfig b/mm/Kconfig index b1448aa81e15..cedb07094e8e 100644 --- a/mm/Kconfig +++ b/mm/Kconfig @@ -224,6 +224,24 @@ config ZSMALLOC_CHAIN_SIZE For more information, see zsmalloc documentation. +config ZSMALLOC_MULTI_PAGES + bool "support zsmalloc multiple pages" + depends on ZSMALLOC && !CONFIG_HIGHMEM + help + This option configures zsmalloc to support allocations larger than + PAGE_SIZE, enabling compression across multiple pages. The size of + these multiple pages is determined by the configured + ZSMALLOC_MULTI_PAGES_ORDER. + +config ZSMALLOC_MULTI_PAGES_ORDER + int "zsmalloc multiple pages order" + default 4 + range 1 9 + depends on ZSMALLOC_MULTI_PAGES + help + This option is used to configure zsmalloc to support the compression + of multiple pages. + menu "Slab allocator options" config SLUB diff --git a/mm/zsmalloc.c b/mm/zsmalloc.c index b42d3545ca85..8658421cee11 100644 --- a/mm/zsmalloc.c +++ b/mm/zsmalloc.c @@ -65,6 +65,12 @@ #define ZSPAGE_MAGIC 0x58 +#ifdef CONFIG_ZSMALLOC_MULTI_PAGES +#define ZSMALLOC_MULTI_PAGES_ORDER (_AC(CONFIG_ZSMALLOC_MULTI_PAGES_ORDER, UL)) +#define ZSMALLOC_MULTI_PAGES_NR (1 << ZSMALLOC_MULTI_PAGES_ORDER) +#define ZSMALLOC_MULTI_PAGES_SIZE (PAGE_SIZE * ZSMALLOC_MULTI_PAGES_NR) +#endif + /* * This must be power of 2 and greater than or equal to sizeof(link_free). * These two conditions ensure that any 'struct link_free' itself doesn't @@ -115,7 +121,8 @@ #define HUGE_BITS 1 #define FULLNESS_BITS 4 -#define CLASS_BITS 8 +#define CLASS_BITS 9 +#define ISOLATED_BITS 5 #define MAGIC_VAL_BITS 8 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) @@ -126,7 +133,11 @@ #define ZS_MIN_ALLOC_SIZE \ MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) /* each chunk includes extra space to keep handle */ +#ifdef CONFIG_ZSMALLOC_MULTI_PAGES +#define ZS_MAX_ALLOC_SIZE (ZSMALLOC_MULTI_PAGES_SIZE) +#else #define ZS_MAX_ALLOC_SIZE PAGE_SIZE +#endif /* * On systems with 4K page size, this gives 255 size classes! There is a @@ -141,9 +152,22 @@ * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN * (reason above) */ -#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) -#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ - ZS_SIZE_CLASS_DELTA) + 1) + +#define ZS_PAGE_SIZE_CLASS_DELTA (PAGE_SIZE >> (CLASS_BITS - 1)) +#define ZS_PAGE_SIZE_CLASSES (DIV_ROUND_UP(PAGE_SIZE - ZS_MIN_ALLOC_SIZE, \ + ZS_PAGE_SIZE_CLASS_DELTA) + 1) + +#ifdef CONFIG_ZSMALLOC_MULTI_PAGES +#define ZS_MULTI_PAGES_SIZE_CLASS_DELTA (ZSMALLOC_MULTI_PAGES_SIZE >> (CLASS_BITS - 1)) +#define ZS_MULTI_PAGES_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - PAGE_SIZE, \ + ZS_MULTI_PAGES_SIZE_CLASS_DELTA) + 1) +#endif + +#ifdef CONFIG_ZSMALLOC_MULTI_PAGES +#define ZS_SIZE_CLASSES (ZS_PAGE_SIZE_CLASSES + ZS_MULTI_PAGES_SIZE_CLASS_DELTA) +#else +#define ZS_SIZE_CLASSES (ZS_PAGE_SIZE_CLASSES) +#endif /* * Pages are distinguished by the ratio of used memory (that is the ratio @@ -179,7 +203,8 @@ struct zs_size_stat { static struct dentry *zs_stat_root; #endif -static size_t huge_class_size; +/* huge_class_size[0] for page, huge_class_size[1] for multiple pages. */ +static size_t huge_class_size[ZSMALLOC_TYPE_MAX]; struct size_class { struct list_head fullness_list[NR_FULLNESS_GROUPS]; @@ -255,6 +280,29 @@ struct zspage { rwlock_t lock; }; +#ifdef CONFIG_ZSMALLOC_MULTI_PAGES +static inline unsigned int class_size_to_zs_order(unsigned long size) +{ + unsigned int order = 0; + + /* used large order to alloc page for zspage when class_size > PAGE_SIZE */ + if (size > PAGE_SIZE) + return ZSMALLOC_MULTI_PAGES_ORDER; + + return order; +} +#else +static inline unsigned int class_size_to_zs_order(unsigned long size) +{ + return 0; +} +#endif + +static inline unsigned long class_size_to_zs_size(unsigned long size) +{ + return PAGE_SIZE * (1 << class_size_to_zs_order(size)); +} + struct mapping_area { local_lock_t lock; char *vm_buf; /* copy buffer for objects that span pages */ @@ -487,11 +535,22 @@ static int get_size_class_index(int size) { int idx = 0; +#ifdef CONFIG_ZSMALLOC_MULTI_PAGES + if (size > PAGE_SIZE) { + idx = ZS_PAGE_SIZE_CLASSES; + idx += DIV_ROUND_UP(size - PAGE_SIZE, + ZS_MULTI_PAGES_SIZE_CLASS_DELTA); + + return min_t(int, ZS_SIZE_CLASSES - 1, idx); + } +#endif + + idx = 0; if (likely(size > ZS_MIN_ALLOC_SIZE)) - idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, - ZS_SIZE_CLASS_DELTA); + idx += DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, + ZS_PAGE_SIZE_CLASS_DELTA); - return min_t(int, ZS_SIZE_CLASSES - 1, idx); + return min_t(int, ZS_PAGE_SIZE_CLASSES - 1, idx); } static inline void class_stat_inc(struct size_class *class, @@ -541,22 +600,19 @@ static int zs_stats_size_show(struct seq_file *s, void *v) unsigned long total_freeable = 0; unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, }; - seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n", - "class", "size", "10%", "20%", "30%", "40%", + seq_printf(s, " %5s %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %16s %8s\n", + "class", "size", "order", "10%", "20%", "30%", "40%", "50%", "60%", "70%", "80%", "90%", "99%", "100%", "obj_allocated", "obj_used", "pages_used", - "pages_per_zspage", "freeable"); + "pages_per_zspage", "objs_per_zspage", "freeable"); for (i = 0; i < ZS_SIZE_CLASSES; i++) { - class = pool->size_class[i]; - if (class->index != i) continue; spin_lock(&pool->lock); - - seq_printf(s, " %5u %5u ", i, class->size); + seq_printf(s, " %5u %5u %5u", i, class->size, class_size_to_zs_order(class->size)); for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) { inuse_totals[fg] += zs_stat_get(class, fg); seq_printf(s, "%9lu ", zs_stat_get(class, fg)); @@ -571,9 +627,9 @@ static int zs_stats_size_show(struct seq_file *s, void *v) pages_used = obj_allocated / objs_per_zspage * class->pages_per_zspage; - seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n", + seq_printf(s, "%13lu %10lu %10lu %16d %16d %8lu\n", obj_allocated, obj_used, pages_used, - class->pages_per_zspage, freeable); + class->pages_per_zspage, objs_per_zspage, freeable); total_objs += obj_allocated; total_used_objs += obj_used; @@ -840,7 +896,8 @@ static void __free_zspage(struct zs_pool *pool, struct size_class *class, cache_free_zspage(pool, zspage); class_stat_dec(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage); - atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated); + atomic_long_sub(class->pages_per_zspage * (1 << class_size_to_zs_order(class->size)), + &pool->pages_allocated); } static void free_zspage(struct zs_pool *pool, struct size_class *class, @@ -869,6 +926,7 @@ static void init_zspage(struct size_class *class, struct zspage *zspage) unsigned int freeobj = 1; unsigned long off = 0; struct page *page = get_first_page(zspage); + unsigned long page_size = class_size_to_zs_size(class->size); while (page) { struct page *next_page; @@ -880,7 +938,7 @@ static void init_zspage(struct size_class *class, struct zspage *zspage) vaddr = kmap_atomic(page); link = (struct link_free *)vaddr + off / sizeof(*link); - while ((off += class->size) < PAGE_SIZE) { + while ((off += class->size) < page_size) { link->next = freeobj++ << OBJ_TAG_BITS; link += class->size / sizeof(*link); } @@ -902,7 +960,7 @@ static void init_zspage(struct size_class *class, struct zspage *zspage) } kunmap_atomic(vaddr); page = next_page; - off %= PAGE_SIZE; + off %= page_size; } set_freeobj(zspage, 0); @@ -952,6 +1010,8 @@ static struct zspage *alloc_zspage(struct zs_pool *pool, struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; struct zspage *zspage = cache_alloc_zspage(pool, gfp); + unsigned int order = class_size_to_zs_order(class->size); + if (!zspage) return NULL; @@ -961,11 +1021,11 @@ static struct zspage *alloc_zspage(struct zs_pool *pool, for (i = 0; i < class->pages_per_zspage; i++) { struct page *page; - page = alloc_page(gfp); + page = alloc_pages(gfp | __GFP_COMP, order); if (!page) { while (--i >= 0) { dec_zone_page_state(pages[i], NR_ZSPAGES); - __free_page(pages[i]); + __free_pages(pages[i], order); } cache_free_zspage(pool, zspage); return NULL; @@ -1024,6 +1084,7 @@ static void *__zs_map_object(struct mapping_area *area, int sizes[2]; void *addr; char *buf = area->vm_buf; + unsigned long page_size = class_size_to_zs_size(size); /* disable page faults to match kmap_atomic() return conditions */ pagefault_disable(); @@ -1032,7 +1093,7 @@ static void *__zs_map_object(struct mapping_area *area, if (area->vm_mm == ZS_MM_WO) goto out; - sizes[0] = PAGE_SIZE - off; + sizes[0] = page_size - off; sizes[1] = size - sizes[0]; /* copy object to per-cpu buffer */ @@ -1052,6 +1113,7 @@ static void __zs_unmap_object(struct mapping_area *area, int sizes[2]; void *addr; char *buf; + unsigned long page_size = class_size_to_zs_size(size); /* no write fastpath */ if (area->vm_mm == ZS_MM_RO) @@ -1062,7 +1124,7 @@ static void __zs_unmap_object(struct mapping_area *area, size -= ZS_HANDLE_SIZE; off += ZS_HANDLE_SIZE; - sizes[0] = PAGE_SIZE - off; + sizes[0] = page_size - off; sizes[1] = size - sizes[0]; /* copy per-cpu buffer to object */ @@ -1169,6 +1231,8 @@ void *zs_map_object(struct zs_pool *pool, unsigned long handle, struct mapping_area *area; struct page *pages[2]; void *ret; + unsigned long page_size; + unsigned long page_mask; /* * Because we use per-cpu mapping areas shared among the @@ -1193,12 +1257,14 @@ void *zs_map_object(struct zs_pool *pool, unsigned long handle, spin_unlock(&pool->lock); class = zspage_class(pool, zspage); - off = offset_in_page(class->size * obj_idx); + page_size = class_size_to_zs_size(class->size); + page_mask = ~(page_size - 1); + off = (class->size * obj_idx) & ~page_mask; local_lock(&zs_map_area.lock); area = this_cpu_ptr(&zs_map_area); area->vm_mm = mm; - if (off + class->size <= PAGE_SIZE) { + if (off + class->size <= page_size) { /* this object is contained entirely within a page */ area->vm_addr = kmap_atomic(page); ret = area->vm_addr + off; @@ -1228,15 +1294,20 @@ void zs_unmap_object(struct zs_pool *pool, unsigned long handle) struct size_class *class; struct mapping_area *area; + unsigned long page_size; + unsigned long page_mask; obj = handle_to_obj(handle); obj_to_location(obj, &page, &obj_idx); zspage = get_zspage(page); class = zspage_class(pool, zspage); - off = offset_in_page(class->size * obj_idx); + + page_size = class_size_to_zs_size(class->size); + page_mask = ~(page_size - 1); + off = (class->size * obj_idx) & ~page_mask; area = this_cpu_ptr(&zs_map_area); - if (off + class->size <= PAGE_SIZE) + if (off + class->size <= page_size) kunmap_atomic(area->vm_addr); else { struct page *pages[2]; @@ -1266,9 +1337,9 @@ EXPORT_SYMBOL_GPL(zs_unmap_object); * * Return: the size (in bytes) of the first huge zsmalloc &size_class. */ -size_t zs_huge_class_size(struct zs_pool *pool) +size_t zs_huge_class_size(struct zs_pool *pool, enum zsmalloc_type type) { - return huge_class_size; + return huge_class_size[type]; } EXPORT_SYMBOL_GPL(zs_huge_class_size); @@ -1283,16 +1354,24 @@ static unsigned long obj_malloc(struct zs_pool *pool, struct page *m_page; unsigned long m_offset; void *vaddr; + unsigned long page_size; + unsigned long page_mask; + unsigned long page_shift; class = pool->size_class[zspage->class]; handle |= OBJ_ALLOCATED_TAG; obj = get_freeobj(zspage); offset = obj * class->size; - nr_page = offset >> PAGE_SHIFT; - m_offset = offset_in_page(offset); - m_page = get_first_page(zspage); + page_size = class_size_to_zs_size(class->size); + page_shift = PAGE_SHIFT + class_size_to_zs_order(class->size); + page_mask = ~(page_size - 1); + + nr_page = offset >> page_shift; + m_offset = offset & ~page_mask; + + m_page = get_first_page(zspage); for (i = 0; i < nr_page; i++) m_page = get_next_page(m_page); @@ -1360,7 +1439,6 @@ unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) } spin_unlock(&pool->lock); - zspage = alloc_zspage(pool, class, gfp); if (!zspage) { cache_free_handle(pool, handle); @@ -1372,7 +1450,8 @@ unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) newfg = get_fullness_group(class, zspage); insert_zspage(class, zspage, newfg); record_obj(handle, obj); - atomic_long_add(class->pages_per_zspage, &pool->pages_allocated); + atomic_long_add(class->pages_per_zspage * (1 << class_size_to_zs_order(class->size)), + &pool->pages_allocated); class_stat_inc(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage); class_stat_inc(class, ZS_OBJS_INUSE, 1); @@ -1393,9 +1472,14 @@ static void obj_free(int class_size, unsigned long obj) unsigned long f_offset; unsigned int f_objidx; void *vaddr; + unsigned long page_size; + unsigned long page_mask; obj_to_location(obj, &f_page, &f_objidx); - f_offset = offset_in_page(class_size * f_objidx); + page_size = class_size_to_zs_size(class_size); + page_mask = ~(page_size - 1); + + f_offset = (class_size * f_objidx) & ~page_mask; zspage = get_zspage(f_page); vaddr = kmap_atomic(f_page); @@ -1454,20 +1538,22 @@ static void zs_object_copy(struct size_class *class, unsigned long dst, void *s_addr, *d_addr; int s_size, d_size, size; int written = 0; + unsigned long page_size = class_size_to_zs_size(class->size); + unsigned long page_mask = ~(page_size - 1); s_size = d_size = class->size; obj_to_location(src, &s_page, &s_objidx); obj_to_location(dst, &d_page, &d_objidx); - s_off = offset_in_page(class->size * s_objidx); - d_off = offset_in_page(class->size * d_objidx); + s_off = (class->size * s_objidx) & ~page_mask; + d_off = (class->size * d_objidx) & ~page_mask; - if (s_off + class->size > PAGE_SIZE) - s_size = PAGE_SIZE - s_off; + if (s_off + class->size > page_size) + s_size = page_size - s_off; - if (d_off + class->size > PAGE_SIZE) - d_size = PAGE_SIZE - d_off; + if (d_off + class->size > page_size) + d_size = page_size - d_off; s_addr = kmap_atomic(s_page); d_addr = kmap_atomic(d_page); @@ -1492,7 +1578,7 @@ static void zs_object_copy(struct size_class *class, unsigned long dst, * kunmap_atomic(d_addr). For more details see * Documentation/mm/highmem.rst. */ - if (s_off >= PAGE_SIZE) { + if (s_off >= page_size) { kunmap_atomic(d_addr); kunmap_atomic(s_addr); s_page = get_next_page(s_page); @@ -1502,7 +1588,7 @@ static void zs_object_copy(struct size_class *class, unsigned long dst, s_off = 0; } - if (d_off >= PAGE_SIZE) { + if (d_off >= page_size) { kunmap_atomic(d_addr); d_page = get_next_page(d_page); d_addr = kmap_atomic(d_page); @@ -1526,11 +1612,12 @@ static unsigned long find_alloced_obj(struct size_class *class, int index = *obj_idx; unsigned long handle = 0; void *addr = kmap_atomic(page); + unsigned long page_size = class_size_to_zs_size(class->size); offset = get_first_obj_offset(page); offset += class->size * index; - while (offset < PAGE_SIZE) { + while (offset < page_size) { if (obj_allocated(page, addr + offset, &handle)) break; @@ -1751,6 +1838,7 @@ static int zs_page_migrate(struct page *newpage, struct page *page, unsigned long handle; unsigned long old_obj, new_obj; unsigned int obj_idx; + unsigned int page_size = PAGE_SIZE; /* * We cannot support the _NO_COPY case here, because copy needs to @@ -1772,6 +1860,7 @@ static int zs_page_migrate(struct page *newpage, struct page *page, */ spin_lock(&pool->lock); class = zspage_class(pool, zspage); + page_size = class_size_to_zs_size(class->size); /* the migrate_write_lock protects zpage access via zs_map_object */ migrate_write_lock(zspage); @@ -1783,10 +1872,10 @@ static int zs_page_migrate(struct page *newpage, struct page *page, * Here, any user cannot access all objects in the zspage so let's move. */ d_addr = kmap_atomic(newpage); - copy_page(d_addr, s_addr); + memcpy(d_addr, s_addr, page_size); kunmap_atomic(d_addr); - for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE; + for (addr = s_addr + offset; addr < s_addr + page_size; addr += class->size) { if (obj_allocated(page, addr, &handle)) { @@ -2066,6 +2155,7 @@ static int calculate_zspage_chain_size(int class_size) { int i, min_waste = INT_MAX; int chain_size = 1; + unsigned long page_size = class_size_to_zs_size(class_size); if (is_power_of_2(class_size)) return chain_size; @@ -2073,7 +2163,7 @@ static int calculate_zspage_chain_size(int class_size) for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { int waste; - waste = (i * PAGE_SIZE) % class_size; + waste = (i * page_size) % class_size; if (waste < min_waste) { min_waste = waste; chain_size = i; @@ -2098,6 +2188,8 @@ struct zs_pool *zs_create_pool(const char *name) int i; struct zs_pool *pool; struct size_class *prev_class = NULL; + int idx = ZSMALLOC_TYPE_BASEPAGE; + int order = 0; pool = kzalloc(sizeof(*pool), GFP_KERNEL); if (!pool) @@ -2119,18 +2211,31 @@ struct zs_pool *zs_create_pool(const char *name) * for merging should be larger or equal to current size. */ for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { - int size; + unsigned int size = 0; int pages_per_zspage; int objs_per_zspage; struct size_class *class; int fullness; - size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; + if (i < ZS_PAGE_SIZE_CLASSES) + size = ZS_MIN_ALLOC_SIZE + i * ZS_PAGE_SIZE_CLASS_DELTA; +#ifdef CONFIG_ZSMALLOC_MULTI_PAGES + if (i >= ZS_PAGE_SIZE_CLASSES) + size = PAGE_SIZE + (i - ZS_PAGE_SIZE_CLASSES) * + ZS_MULTI_PAGES_SIZE_CLASS_DELTA; +#endif + if (size > ZS_MAX_ALLOC_SIZE) size = ZS_MAX_ALLOC_SIZE; - pages_per_zspage = calculate_zspage_chain_size(size); - objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; +#ifdef CONFIG_ZSMALLOC_MULTI_PAGES + order = class_size_to_zs_order(size); + if (order == ZSMALLOC_MULTI_PAGES_ORDER) + idx = ZSMALLOC_TYPE_MULTI_PAGES; +#endif + + pages_per_zspage = calculate_zspage_chain_size(size); + objs_per_zspage = pages_per_zspage * PAGE_SIZE * (1 << order) / size; /* * We iterate from biggest down to smallest classes, * so huge_class_size holds the size of the first huge @@ -2138,8 +2243,8 @@ struct zs_pool *zs_create_pool(const char *name) * endup in the huge class. */ if (pages_per_zspage != 1 && objs_per_zspage != 1 && - !huge_class_size) { - huge_class_size = size; + !huge_class_size[idx]) { + huge_class_size[idx] = size; /* * The object uses ZS_HANDLE_SIZE bytes to store the * handle. We need to subtract it, because zs_malloc() @@ -2149,7 +2254,7 @@ struct zs_pool *zs_create_pool(const char *name) * class because it grows by ZS_HANDLE_SIZE extra bytes * right before class lookup. */ - huge_class_size -= (ZS_HANDLE_SIZE - 1); + huge_class_size[idx] -= (ZS_HANDLE_SIZE - 1); } /* -- 2.34.1