Moved data structures and basic helpers related to per cpu kva allocator up too to along with these macros with no functional change happened. Signed-off-by: rulinhuang <rulin.huang@xxxxxxxxx> --- V6 -> V7: Adjusted the macros --- mm/vmalloc.c | 262 +++++++++++++++++++++++++-------------------------- 1 file changed, 131 insertions(+), 131 deletions(-) diff --git a/mm/vmalloc.c b/mm/vmalloc.c index 25a8df497255..fc027a61c12e 100644 --- a/mm/vmalloc.c +++ b/mm/vmalloc.c @@ -887,6 +887,137 @@ is_vn_id_valid(unsigned int node_id) return false; } +/* + * vmap space is limited especially on 32 bit architectures. Ensure there is + * room for at least 16 percpu vmap blocks per CPU. + */ +/* + * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able + * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess + * instead (we just need a rough idea) + */ +#if BITS_PER_LONG == 32 +#define VMALLOC_SPACE (128UL*1024*1024) +#else +#define VMALLOC_SPACE (128UL*1024*1024*1024) +#endif + +#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) +#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ +#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ +#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) +#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ +#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ +#define VMAP_BBMAP_BITS \ + VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ + VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ + VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) + +#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) + +/* + * Purge threshold to prevent overeager purging of fragmented blocks for + * regular operations: Purge if vb->free is less than 1/4 of the capacity. + */ +#define VMAP_PURGE_THRESHOLD (VMAP_BBMAP_BITS / 4) + +#define VMAP_RAM 0x1 /* indicates vm_map_ram area*/ +#define VMAP_BLOCK 0x2 /* mark out the vmap_block sub-type*/ +#define VMAP_FLAGS_MASK 0x3 + +struct vmap_block_queue { + spinlock_t lock; + struct list_head free; + + /* + * An xarray requires an extra memory dynamically to + * be allocated. If it is an issue, we can use rb-tree + * instead. + */ + struct xarray vmap_blocks; +}; + +struct vmap_block { + spinlock_t lock; + struct vmap_area *va; + unsigned long free, dirty; + DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS); + unsigned long dirty_min, dirty_max; /*< dirty range */ + struct list_head free_list; + struct rcu_head rcu_head; + struct list_head purge; +}; + +/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ +static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); + +/* + * In order to fast access to any "vmap_block" associated with a + * specific address, we use a hash. + * + * A per-cpu vmap_block_queue is used in both ways, to serialize + * an access to free block chains among CPUs(alloc path) and it + * also acts as a vmap_block hash(alloc/free paths). It means we + * overload it, since we already have the per-cpu array which is + * used as a hash table. When used as a hash a 'cpu' passed to + * per_cpu() is not actually a CPU but rather a hash index. + * + * A hash function is addr_to_vb_xa() which hashes any address + * to a specific index(in a hash) it belongs to. This then uses a + * per_cpu() macro to access an array with generated index. + * + * An example: + * + * CPU_1 CPU_2 CPU_0 + * | | | + * V V V + * 0 10 20 30 40 50 60 + * |------|------|------|------|------|------|...<vmap address space> + * CPU0 CPU1 CPU2 CPU0 CPU1 CPU2 + * + * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus + * it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock; + * + * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus + * it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock; + * + * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus + * it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock. + * + * This technique almost always avoids lock contention on insert/remove, + * however xarray spinlocks protect against any contention that remains. + */ +static struct xarray * +addr_to_vb_xa(unsigned long addr) +{ + int index = (addr / VMAP_BLOCK_SIZE) % num_possible_cpus(); + + return &per_cpu(vmap_block_queue, index).vmap_blocks; +} + +/* + * We should probably have a fallback mechanism to allocate virtual memory + * out of partially filled vmap blocks. However vmap block sizing should be + * fairly reasonable according to the vmalloc size, so it shouldn't be a + * big problem. + */ + +static unsigned long addr_to_vb_idx(unsigned long addr) +{ + addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); + addr /= VMAP_BLOCK_SIZE; + return addr; +} + +static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) +{ + unsigned long addr; + + addr = va_start + (pages_off << PAGE_SHIFT); + BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); + return (void *)addr; +} + static __always_inline unsigned long va_size(struct vmap_area *va) { @@ -2327,137 +2458,6 @@ static struct vmap_area *find_unlink_vmap_area(unsigned long addr) /*** Per cpu kva allocator ***/ -/* - * vmap space is limited especially on 32 bit architectures. Ensure there is - * room for at least 16 percpu vmap blocks per CPU. - */ -/* - * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able - * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess - * instead (we just need a rough idea) - */ -#if BITS_PER_LONG == 32 -#define VMALLOC_SPACE (128UL*1024*1024) -#else -#define VMALLOC_SPACE (128UL*1024*1024*1024) -#endif - -#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) -#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ -#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ -#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) -#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ -#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ -#define VMAP_BBMAP_BITS \ - VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ - VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ - VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) - -#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) - -/* - * Purge threshold to prevent overeager purging of fragmented blocks for - * regular operations: Purge if vb->free is less than 1/4 of the capacity. - */ -#define VMAP_PURGE_THRESHOLD (VMAP_BBMAP_BITS / 4) - -#define VMAP_RAM 0x1 /* indicates vm_map_ram area*/ -#define VMAP_BLOCK 0x2 /* mark out the vmap_block sub-type*/ -#define VMAP_FLAGS_MASK 0x3 - -struct vmap_block_queue { - spinlock_t lock; - struct list_head free; - - /* - * An xarray requires an extra memory dynamically to - * be allocated. If it is an issue, we can use rb-tree - * instead. - */ - struct xarray vmap_blocks; -}; - -struct vmap_block { - spinlock_t lock; - struct vmap_area *va; - unsigned long free, dirty; - DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS); - unsigned long dirty_min, dirty_max; /*< dirty range */ - struct list_head free_list; - struct rcu_head rcu_head; - struct list_head purge; -}; - -/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ -static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); - -/* - * In order to fast access to any "vmap_block" associated with a - * specific address, we use a hash. - * - * A per-cpu vmap_block_queue is used in both ways, to serialize - * an access to free block chains among CPUs(alloc path) and it - * also acts as a vmap_block hash(alloc/free paths). It means we - * overload it, since we already have the per-cpu array which is - * used as a hash table. When used as a hash a 'cpu' passed to - * per_cpu() is not actually a CPU but rather a hash index. - * - * A hash function is addr_to_vb_xa() which hashes any address - * to a specific index(in a hash) it belongs to. This then uses a - * per_cpu() macro to access an array with generated index. - * - * An example: - * - * CPU_1 CPU_2 CPU_0 - * | | | - * V V V - * 0 10 20 30 40 50 60 - * |------|------|------|------|------|------|...<vmap address space> - * CPU0 CPU1 CPU2 CPU0 CPU1 CPU2 - * - * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus - * it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock; - * - * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus - * it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock; - * - * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus - * it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock. - * - * This technique almost always avoids lock contention on insert/remove, - * however xarray spinlocks protect against any contention that remains. - */ -static struct xarray * -addr_to_vb_xa(unsigned long addr) -{ - int index = (addr / VMAP_BLOCK_SIZE) % num_possible_cpus(); - - return &per_cpu(vmap_block_queue, index).vmap_blocks; -} - -/* - * We should probably have a fallback mechanism to allocate virtual memory - * out of partially filled vmap blocks. However vmap block sizing should be - * fairly reasonable according to the vmalloc size, so it shouldn't be a - * big problem. - */ - -static unsigned long addr_to_vb_idx(unsigned long addr) -{ - addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); - addr /= VMAP_BLOCK_SIZE; - return addr; -} - -static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) -{ - unsigned long addr; - - addr = va_start + (pages_off << PAGE_SHIFT); - BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); - return (void *)addr; -} - /** * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this * block. Of course pages number can't exceed VMAP_BBMAP_BITS -- 2.43.0