On 2/18/24 20:25, David Rientjes wrote: > On Thu, 15 Feb 2024, Jianfeng Wang wrote: > >> When reading "/proc/slabinfo", the kernel needs to report the number of >> free objects for each kmem_cache. The current implementation relies on >> count_partial() that counts the number of free objects by scanning each >> kmem_cache_node's partial slab list and summing free objects from all >> partial slabs in the list. This process must hold per kmem_cache_node >> spinlock and disable IRQ. Consequently, it can block slab allocation >> requests on other CPU cores and cause timeouts for network devices etc., >> if the partial slab list is long. In production, even NMI watchdog can >> be triggered because some slab caches have a long partial list: e.g., >> for "buffer_head", the number of partial slabs was observed to be ~1M >> in one kmem_cache_node. This problem was also observed by several >> others [1-2] in the past. >> >> The fix is to maintain a counter of free objects for each kmem_cache. >> Then, in get_slabinfo(), use the counter rather than count_partial() >> when reporting the number of free objects for a slab cache. per-cpu >> counter is used to minimize atomic or lock operation. >> >> Benchmark: run hackbench on a dual-socket 72-CPU bare metal machine >> with 256 GB memory and Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.3 GHz. >> The command is "hackbench 18 thread 20000". Each group gets 10 runs. >> > > This seems particularly intrusive for the common path to optimize for > reading of /proc/slabinfo, and that's shown in the benchmark result. > > Could you discuss the /proc/slabinfo usage model a bit? It's not clear if > this is being continuously read, or whether even a single read in > isolation is problematic. > > That said, optimizing for reading /proc/slabinfo at the cost of runtime > performance degradation doesn't sound like the right trade-off. It should be possible to make this overhead smaller by restricting the counter only to partial list slabs, as [2] did. This would keep it out of the fast paths, where it's really not acceptable. Note [2] used atomic_long_t and the percpu counters used here should be lower overhead. So basically try to get the best of both attemps. >> Results: >> - Mainline: >> 21.0381 +- 0.0325 seconds time elapsed ( +- 0.15% ) >> - Mainline w/ this patch: >> 21.1878 +- 0.0239 seconds time elapsed ( +- 0.11% ) >> >> [1] https://lore.kernel.org/linux-mm/ >> alpine.DEB.2.21.2003031602460.1537@xxxxxxxxxxxxxxx/T/ >> [2] https://lore.kernel.org/lkml/ >> alpine.DEB.2.22.394.2008071258020.55871@xxxxxxxxxxxxxxx/T/ >> >> Signed-off-by: Jianfeng Wang <jianfeng.w.wang@xxxxxxxxxx> >> --- >> mm/slab.h | 4 ++++ >> mm/slub.c | 31 +++++++++++++++++++++++++++++-- >> 2 files changed, 33 insertions(+), 2 deletions(-) >> >> diff --git a/mm/slab.h b/mm/slab.h >> index 54deeb0428c6..a0e7672ba648 100644 >> --- a/mm/slab.h >> +++ b/mm/slab.h >> @@ -11,6 +11,7 @@ >> #include <linux/memcontrol.h> >> #include <linux/kfence.h> >> #include <linux/kasan.h> >> +#include <linux/percpu_counter.h> >> >> /* >> * Internal slab definitions >> @@ -277,6 +278,9 @@ struct kmem_cache { >> unsigned int red_left_pad; /* Left redzone padding size */ >> const char *name; /* Name (only for display!) */ >> struct list_head list; /* List of slab caches */ >> +#ifdef CONFIG_SLUB_DEBUG >> + struct percpu_counter free_objects; >> +#endif >> #ifdef CONFIG_SYSFS >> struct kobject kobj; /* For sysfs */ >> #endif >> diff --git a/mm/slub.c b/mm/slub.c >> index 2ef88bbf56a3..44f8ded96574 100644 >> --- a/mm/slub.c >> +++ b/mm/slub.c >> @@ -736,6 +736,12 @@ static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab, >> static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; >> static DEFINE_SPINLOCK(object_map_lock); >> >> +static inline void >> +__update_kmem_cache_free_objs(struct kmem_cache *s, s64 delta) >> +{ >> + percpu_counter_add_batch(&s->free_objects, delta, INT_MAX); >> +} >> + >> static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, >> struct slab *slab) >> { >> @@ -1829,6 +1835,9 @@ slab_flags_t kmem_cache_flags(unsigned int object_size, >> return flags | slub_debug_local; >> } >> #else /* !CONFIG_SLUB_DEBUG */ >> +static inline void >> +__update_kmem_cache_free_objs(struct kmem_cache *s, s64 delta) {} >> + >> static inline void setup_object_debug(struct kmem_cache *s, void *object) {} >> static inline >> void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} >> @@ -2369,6 +2378,7 @@ static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) >> slab->inuse = 0; >> slab->frozen = 0; >> >> + __update_kmem_cache_free_objs(s, slab->objects); >> account_slab(slab, oo_order(oo), s, flags); >> >> slab->slab_cache = s; >> @@ -2445,6 +2455,7 @@ static void free_slab(struct kmem_cache *s, struct slab *slab) >> call_rcu(&slab->rcu_head, rcu_free_slab); >> else >> __free_slab(s, slab); >> + __update_kmem_cache_free_objs(s, -slab->objects); >> } >> >> static void discard_slab(struct kmem_cache *s, struct slab *slab) >> @@ -3859,6 +3870,8 @@ static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list >> */ >> slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size); >> >> + if (object) >> + __update_kmem_cache_free_objs(s, -1); >> return object; >> } >> >> @@ -4235,6 +4248,7 @@ static __always_inline void do_slab_free(struct kmem_cache *s, >> unsigned long tid; >> void **freelist; >> >> + __update_kmem_cache_free_objs(s, cnt); >> redo: >> /* >> * Determine the currently cpus per cpu slab. >> @@ -4286,6 +4300,7 @@ static void do_slab_free(struct kmem_cache *s, >> struct slab *slab, void *head, void *tail, >> int cnt, unsigned long addr) >> { >> + __update_kmem_cache_free_objs(s, cnt); >> __slab_free(s, slab, head, tail, cnt, addr); >> } >> #endif /* CONFIG_SLUB_TINY */ >> @@ -4658,6 +4673,7 @@ int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, >> memcg_slab_alloc_error_hook(s, size, objcg); >> } >> >> + __update_kmem_cache_free_objs(s, -i); >> return i; >> } >> EXPORT_SYMBOL(kmem_cache_alloc_bulk); >> @@ -4899,6 +4915,9 @@ void __kmem_cache_release(struct kmem_cache *s) >> cache_random_seq_destroy(s); >> #ifndef CONFIG_SLUB_TINY >> free_percpu(s->cpu_slab); >> +#endif >> +#ifdef CONFIG_SLUB_DEBUG >> + percpu_counter_destroy(&s->free_objects); >> #endif >> free_kmem_cache_nodes(s); >> } >> @@ -5109,6 +5128,14 @@ static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) >> s->random = get_random_long(); >> #endif >> >> +#ifdef CONFIG_SLUB_DEBUG >> + int ret; >> + >> + ret = percpu_counter_init(&s->free_objects, 0, GFP_KERNEL); >> + if (ret) >> + return ret; >> +#endif >> + >> if (!calculate_sizes(s)) >> goto error; >> if (disable_higher_order_debug) { >> @@ -7100,15 +7127,15 @@ void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) >> { >> unsigned long nr_slabs = 0; >> unsigned long nr_objs = 0; >> - unsigned long nr_free = 0; >> + unsigned long nr_free; >> int node; >> struct kmem_cache_node *n; >> >> for_each_kmem_cache_node(s, node, n) { >> nr_slabs += node_nr_slabs(n); >> nr_objs += node_nr_objs(n); >> - nr_free += count_partial(n, count_free); >> } >> + nr_free = percpu_counter_sum_positive(&s->free_objects); >> >> sinfo->active_objs = nr_objs - nr_free; >> sinfo->num_objs = nr_objs; >> -- >> 2.42.1 >> >>