Re: [PATCH v4 6/7] hugetlb: parallelize 2M hugetlb allocation and initialization

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 





On 2024/1/18 20:39, Gang Li wrote:
By distributing both the allocation and the initialization tasks across
multiple threads, the initialization of 2M hugetlb will be faster,
thereby improving the boot speed.

Here are some test results:
         test          no patch(ms)   patched(ms)   saved
  ------------------- -------------- ------------- --------
   256c2t(4 node) 2M           3336          1051   68.52%
   128c1t(2 node) 2M           1943           716   63.15%

Signed-off-by: Gang Li <gang.li@xxxxxxxxx>
Tested-by: David Rientjes <rientjes@xxxxxxxxxx>
---
  mm/hugetlb.c | 70 ++++++++++++++++++++++++++++++++++++++--------------
  1 file changed, 52 insertions(+), 18 deletions(-)

diff --git a/mm/hugetlb.c b/mm/hugetlb.c
index effe5539e545..9b348ba418f5 100644
--- a/mm/hugetlb.c
+++ b/mm/hugetlb.c
@@ -35,6 +35,7 @@
  #include <linux/delayacct.h>
  #include <linux/memory.h>
  #include <linux/mm_inline.h>
+#include <linux/padata.h>
#include <asm/page.h>
  #include <asm/pgalloc.h>
@@ -3510,43 +3511,76 @@ static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated,
  	}
  }
-static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
+static void __init hugetlb_alloc_node(unsigned long start, unsigned long end, void *arg)
  {
-	unsigned long i;
+	struct hstate *h = (struct hstate *)arg;
+	int i, num = end - start;
+	nodemask_t node_alloc_noretry;
+	unsigned long flags;
+	int next_node = 0;

This should be first_online_node which may be not zero.

- for (i = 0; i < h->max_huge_pages; ++i) {
-		if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
+	/* Bit mask controlling how hard we retry per-node allocations.*/
+	nodes_clear(node_alloc_noretry);
+
+	for (i = 0; i < num; ++i) {
+		struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
+						&node_alloc_noretry, &next_node);
+		if (!folio)
  			break;
+		spin_lock_irqsave(&hugetlb_lock, flags);

I suspect there will more contention on this lock when parallelizing.
I want to know why you chose to drop prep_and_add_allocated_folios()
call in the original hugetlb_pages_alloc_boot()?

+		__prep_account_new_huge_page(h, folio_nid(folio));
+		enqueue_hugetlb_folio(h, folio);
+		spin_unlock_irqrestore(&hugetlb_lock, flags);
  		cond_resched();
  	}
+}
- return i;
+static void __init hugetlb_vmemmap_optimize_node(unsigned long start, unsigned long end, void *arg)
+{
+	struct hstate *h = (struct hstate *)arg;
+	int nid = start;
+
+	hugetlb_vmemmap_optimize_folios(h, &h->hugepage_freelists[nid]);
  }
-static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
+static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
  {
  	unsigned long i;
-	struct folio *folio;
-	LIST_HEAD(folio_list);
-	nodemask_t node_alloc_noretry;
-
-	/* Bit mask controlling how hard we retry per-node allocations.*/
-	nodes_clear(node_alloc_noretry);
for (i = 0; i < h->max_huge_pages; ++i) {
-		folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
-						&node_alloc_noretry);
-		if (!folio)
+		if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
  			break;
-		list_add(&folio->lru, &folio_list);
  		cond_resched();
  	}
- prep_and_add_allocated_folios(h, &folio_list);
-
  	return i;
  }
+static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
+{
+	struct padata_mt_job job = {
+		.fn_arg		= h,
+		.align		= 1,
+		.numa_aware	= true
+	};
+
+	job.thread_fn	= hugetlb_alloc_node;
+	job.start	= 0;
+	job.size	= h->max_huge_pages;
+	job.min_chunk	= h->max_huge_pages / num_node_state(N_MEMORY) / 2;
+	job.max_threads	= num_node_state(N_MEMORY) * 2;

I am curious the magic number of 2 used in assignments of ->min_chunk
and ->max_threads, does it from your experiment? I thinke it should
be a comment here.

And I am also sceptical about the optimization for a small amount of
allocation of hugepages. Given 4 hugepags needed to be allocated on UMA
system, job.min_chunk will be 2, job.max_threads will be 2. Then, 2
workers will be scheduled, however each worker will just allocate 2 pages,
how much the cost of scheduling? What if allocate 4 pages in single
worker? Do you have any numbers on parallelism vs non-parallelism in
a small allocation case? If we cannot gain from this case, I think we shold
assign a reasonable value to ->min_chunk based on experiment.

Thanks.

+	padata_do_multithreaded(&job);
+
+	job.thread_fn	= hugetlb_vmemmap_optimize_node;
+	job.start	= 0;
+	job.size	= num_node_state(N_MEMORY);
+	job.min_chunk	= 1;
+	job.max_threads	= num_node_state(N_MEMORY);
+	padata_do_multithreaded(&job);
+
+	return h->nr_huge_pages;
+}
+
  /*
   * NOTE: this routine is called in different contexts for gigantic and
   * non-gigantic pages.





[Index of Archives]     [Linux ARM Kernel]     [Linux ARM]     [Linux Omap]     [Fedora ARM]     [IETF Annouce]     [Bugtraq]     [Linux OMAP]     [Linux MIPS]     [eCos]     [Asterisk Internet PBX]     [Linux API]

  Powered by Linux