[PATCH net-next v2 1/3] page_pool: Rename pp_frag_count to pp_ref_count

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



To support multiple users referencing the same fragment, pp_frag_count is
renamed to pp_ref_count to better reflect its actual meaning based on the
suggestion from [1].

[1]
http://lore.kernel.org/netdev/f71d9448-70c8-8793-dc9a-0eb48a570300@xxxxxxxxxx

Signed-off-by: Liang Chen <liangchen.linux@xxxxxxxxx>
---
 include/linux/mm_types.h        |  2 +-
 include/net/page_pool/helpers.h | 31 ++++++++++++++++++-------------
 2 files changed, 19 insertions(+), 14 deletions(-)

diff --git a/include/linux/mm_types.h b/include/linux/mm_types.h
index 957ce38768b2..64e4572ef06d 100644
--- a/include/linux/mm_types.h
+++ b/include/linux/mm_types.h
@@ -125,7 +125,7 @@ struct page {
 			struct page_pool *pp;
 			unsigned long _pp_mapping_pad;
 			unsigned long dma_addr;
-			atomic_long_t pp_frag_count;
+			atomic_long_t pp_ref_count;
 		};
 		struct {	/* Tail pages of compound page */
 			unsigned long compound_head;	/* Bit zero is set */
diff --git a/include/net/page_pool/helpers.h b/include/net/page_pool/helpers.h
index 4ebd544ae977..a6dc9412c9ae 100644
--- a/include/net/page_pool/helpers.h
+++ b/include/net/page_pool/helpers.h
@@ -29,7 +29,7 @@
  * page allocated from page pool. Page splitting enables memory saving and thus
  * avoids TLB/cache miss for data access, but there also is some cost to
  * implement page splitting, mainly some cache line dirtying/bouncing for
- * 'struct page' and atomic operation for page->pp_frag_count.
+ * 'struct page' and atomic operation for page->pp_ref_count.
  *
  * The API keeps track of in-flight pages, in order to let API users know when
  * it is safe to free a page_pool object, the API users must call
@@ -214,61 +214,66 @@ inline enum dma_data_direction page_pool_get_dma_dir(struct page_pool *pool)
 	return pool->p.dma_dir;
 }
 
-/* pp_frag_count represents the number of writers who can update the page
+/* pp_ref_count represents the number of writers who can update the page
  * either by updating skb->data or via DMA mappings for the device.
  * We can't rely on the page refcnt for that as we don't know who might be
  * holding page references and we can't reliably destroy or sync DMA mappings
  * of the fragments.
  *
- * When pp_frag_count reaches 0 we can either recycle the page if the page
+ * pp_ref_count initially corresponds to the number of fragments. However,
+ * when multiple users start to reference a single fragment, for example in
+ * skb_try_coalesce, the pp_ref_count will become greater than the number of
+ * fragments.
+ *
+ * When pp_ref_count reaches 0 we can either recycle the page if the page
  * refcnt is 1 or return it back to the memory allocator and destroy any
  * mappings we have.
  */
 static inline void page_pool_fragment_page(struct page *page, long nr)
 {
-	atomic_long_set(&page->pp_frag_count, nr);
+	atomic_long_set(&page->pp_ref_count, nr);
 }
 
 static inline long page_pool_defrag_page(struct page *page, long nr)
 {
 	long ret;
 
-	/* If nr == pp_frag_count then we have cleared all remaining
+	/* If nr == pp_ref_count then we have cleared all remaining
 	 * references to the page:
 	 * 1. 'n == 1': no need to actually overwrite it.
 	 * 2. 'n != 1': overwrite it with one, which is the rare case
-	 *              for pp_frag_count draining.
+	 *              for pp_ref_count draining.
 	 *
 	 * The main advantage to doing this is that not only we avoid a atomic
 	 * update, as an atomic_read is generally a much cheaper operation than
 	 * an atomic update, especially when dealing with a page that may be
-	 * partitioned into only 2 or 3 pieces; but also unify the pp_frag_count
+	 * partitioned into only 2 or 3 pieces; but also unify the pp_ref_count
 	 * handling by ensuring all pages have partitioned into only 1 piece
 	 * initially, and only overwrite it when the page is partitioned into
 	 * more than one piece.
 	 */
-	if (atomic_long_read(&page->pp_frag_count) == nr) {
+	if (atomic_long_read(&page->pp_ref_count) == nr) {
 		/* As we have ensured nr is always one for constant case using
 		 * the BUILD_BUG_ON(), only need to handle the non-constant case
-		 * here for pp_frag_count draining, which is a rare case.
+		 * here for pp_ref_count draining, which is a rare case.
 		 */
 		BUILD_BUG_ON(__builtin_constant_p(nr) && nr != 1);
 		if (!__builtin_constant_p(nr))
-			atomic_long_set(&page->pp_frag_count, 1);
+			atomic_long_set(&page->pp_ref_count, 1);
 
 		return 0;
 	}
 
-	ret = atomic_long_sub_return(nr, &page->pp_frag_count);
+	ret = atomic_long_sub_return(nr, &page->pp_ref_count);
 	WARN_ON(ret < 0);
 
-	/* We are the last user here too, reset pp_frag_count back to 1 to
+	/* We are the last user here too, reset pp_ref_count back to 1 to
 	 * ensure all pages have been partitioned into 1 piece initially,
 	 * this should be the rare case when the last two fragment users call
 	 * page_pool_defrag_page() currently.
 	 */
 	if (unlikely(!ret))
-		atomic_long_set(&page->pp_frag_count, 1);
+		atomic_long_set(&page->pp_ref_count, 1);
 
 	return ret;
 }
-- 
2.31.1





[Index of Archives]     [Linux ARM Kernel]     [Linux ARM]     [Linux Omap]     [Fedora ARM]     [IETF Annouce]     [Bugtraq]     [Linux OMAP]     [Linux MIPS]     [eCos]     [Asterisk Internet PBX]     [Linux API]

  Powered by Linux