On 10/26/23 11:24, Barry Song wrote: > On Thu, Oct 26, 2023 at 12:55 PM Anshuman Khandual > <anshuman.khandual@xxxxxxx> wrote: >> >> >> >> On 10/24/23 18:26, Baolin Wang wrote: >>> Now ptep_clear_flush_young() is only called by folio_referenced() to >>> check if the folio was referenced, and now it will call a tlb flush on >>> ARM64 architecture. However the tlb flush can be expensive on ARM64 >>> servers, especially for the systems with a large CPU numbers. >> >> TLB flush would be expensive on *any* platform with large CPU numbers ? >> >>> >>> Similar to the x86 architecture, below comments also apply equally to >>> ARM64 architecture. So we can drop the tlb flush operation in >>> ptep_clear_flush_young() on ARM64 architecture to improve the performance. >>> " >>> /* Clearing the accessed bit without a TLB flush >>> * doesn't cause data corruption. [ It could cause incorrect >>> * page aging and the (mistaken) reclaim of hot pages, but the >>> * chance of that should be relatively low. ] >>> * >>> * So as a performance optimization don't flush the TLB when >>> * clearing the accessed bit, it will eventually be flushed by >>> * a context switch or a VM operation anyway. [ In the rare >>> * event of it not getting flushed for a long time the delay >>> * shouldn't really matter because there's no real memory >>> * pressure for swapout to react to. ] >>> */ >> >> If always true, this sounds generic enough for all platforms, why only >> x86 and arm64 ? >> >>> " >>> Running the thpscale to show some obvious improvements for compaction >>> latency with this patch: >>> base patched >>> Amean fault-both-1 1093.19 ( 0.00%) 1084.57 * 0.79%* >>> Amean fault-both-3 2566.22 ( 0.00%) 2228.45 * 13.16%* >>> Amean fault-both-5 3591.22 ( 0.00%) 3146.73 * 12.38%* >>> Amean fault-both-7 4157.26 ( 0.00%) 4113.67 * 1.05%* >>> Amean fault-both-12 6184.79 ( 0.00%) 5218.70 * 15.62%* >>> Amean fault-both-18 9103.70 ( 0.00%) 7739.71 * 14.98%* >>> Amean fault-both-24 12341.73 ( 0.00%) 10684.23 * 13.43%* >>> Amean fault-both-30 15519.00 ( 0.00%) 13695.14 * 11.75%* >>> Amean fault-both-32 16189.15 ( 0.00%) 14365.73 * 11.26%* >>> base patched >>> Duration User 167.78 161.03 >>> Duration System 1836.66 1673.01 >>> Duration Elapsed 2074.58 2059.75 >> >> Could you please point to the test repo you are running ? >> >>> >>> Barry Song submitted a similar patch [1] before, that replaces the >>> ptep_clear_flush_young_notify() with ptep_clear_young_notify() in >>> folio_referenced_one(). However, I'm not sure if removing the tlb flush >>> operation is applicable to every architecture in kernel, so dropping >>> the tlb flush for ARM64 seems a sensible change. >> >> The reasoning provided here sounds generic when true, hence there seems >> to be no justification to keep it limited just for arm64 and x86. Also >> what about pmdp_clear_flush_young_notify() when THP is enabled. Should >> that also not do a TLB flush after clearing access bit ? Although arm64 >> does not enable __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH, rather depends on >> the generic pmdp_clear_flush_young() which also does a TLB flush via >> flush_pmd_tlb_range() while clearing the access bit. >> >>> >>> Note: I am okay for both approach, if someone can help to ensure that >>> all architectures do not need the tlb flush when clearing the accessed >>> bit, then I also think Barry's patch is better (hope Barry can resend >>> his patch). >> >> This paragraph belongs after the '----' below and not part of the commit >> message. >> >>> >>> [1] https://lore.kernel.org/lkml/20220617070555.344368-1-21cnbao@xxxxxxxxx/ >>> Signed-off-by: Baolin Wang <baolin.wang@xxxxxxxxxxxxxxxxx> >>> --- >>> arch/arm64/include/asm/pgtable.h | 31 ++++++++++++++++--------------- >>> 1 file changed, 16 insertions(+), 15 deletions(-) >>> >>> diff --git a/arch/arm64/include/asm/pgtable.h b/arch/arm64/include/asm/pgtable.h >>> index 0bd18de9fd97..2979d796ba9d 100644 >>> --- a/arch/arm64/include/asm/pgtable.h >>> +++ b/arch/arm64/include/asm/pgtable.h >>> @@ -905,21 +905,22 @@ static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, >>> static inline int ptep_clear_flush_young(struct vm_area_struct *vma, >>> unsigned long address, pte_t *ptep) >>> { >>> - int young = ptep_test_and_clear_young(vma, address, ptep); >>> - >>> - if (young) { >>> - /* >>> - * We can elide the trailing DSB here since the worst that can >>> - * happen is that a CPU continues to use the young entry in its >>> - * TLB and we mistakenly reclaim the associated page. The >>> - * window for such an event is bounded by the next >>> - * context-switch, which provides a DSB to complete the TLB >>> - * invalidation. >>> - */ >>> - flush_tlb_page_nosync(vma, address); >>> - } >>> - >>> - return young; >>> + /* >>> + * This comment is borrowed from x86, but applies equally to ARM64: >>> + * >>> + * Clearing the accessed bit without a TLB flush doesn't cause >>> + * data corruption. [ It could cause incorrect page aging and >>> + * the (mistaken) reclaim of hot pages, but the chance of that >>> + * should be relatively low. ] >>> + * >>> + * So as a performance optimization don't flush the TLB when >>> + * clearing the accessed bit, it will eventually be flushed by >>> + * a context switch or a VM operation anyway. [ In the rare >>> + * event of it not getting flushed for a long time the delay >>> + * shouldn't really matter because there's no real memory >>> + * pressure for swapout to react to. ] >>> + */ >>> + return ptep_test_and_clear_young(vma, address, ptep); >>> } >>> >>> #ifdef CONFIG_TRANSPARENT_HUGEPAGE >> >> There are three distinct concerns here >> >> 1) What are the chances of this misleading existing hot page reclaim process >> 2) How secondary MMU such as SMMU adapt to change in mappings without a flush >> 3) Could this break the architecture rule requiring a TLB flush after access >> bit clear on a page table entry > > In terms of all of above concerns, though 2 is different, which is an > issue between > cpu and non-cpu, > i feel kernel has actually dropped tlb flush at least for mglru, there > is no flush in > lru_gen_look_around(), > > static bool folio_referenced_one(struct folio *folio, > struct vm_area_struct *vma, unsigned long address, void *arg) > { > ... > > if (pvmw.pte) { > if (lru_gen_enabled() && > pte_young(ptep_get(pvmw.pte))) { > lru_gen_look_around(&pvmw); > referenced++; > } > > if (ptep_clear_flush_young_notify(vma, address, > pvmw.pte)) > referenced++; > } > > return true; > } > > and so is in walk_pte_range() of vmscan. linux has been surviving with > all above concerns for a while, believing it or not :-) Although the first two concerns could be worked upon in the SW, kernel surviving after breaking arch rules explicitly is not a correct state to be in IMHO.