mm->mm_lock_seq effectively functions as a read/write lock; therefore it must be used with acquire/release semantics. A specific example is the interaction between userfaultfd_register() and lock_vma_under_rcu(). userfaultfd_register() does the following from the point where it changes a VMA's flags to the point where concurrent readers are permitted again (in a simple scenario where only a single private VMA is accessed and no merging/splitting is involved): userfaultfd_register userfaultfd_set_vm_flags vm_flags_reset vma_start_write down_write(&vma->vm_lock->lock) vma->vm_lock_seq = mm_lock_seq [marks VMA as busy] up_write(&vma->vm_lock->lock) vm_flags_init [sets VM_UFFD_* in __vm_flags] vma->vm_userfaultfd_ctx.ctx = ctx mmap_write_unlock vma_end_write_all WRITE_ONCE(mm->mm_lock_seq, mm->mm_lock_seq + 1) [unlocks VMA] There are no memory barriers in between the __vm_flags update and the mm->mm_lock_seq update that unlocks the VMA, so the unlock can be reordered to above the `vm_flags_init()` call, which means from the perspective of a concurrent reader, a VMA can be marked as a userfaultfd VMA while it is not VMA-locked. That's bad, we definitely need a store-release for the unlock operation. The non-atomic write to vma->vm_lock_seq in vma_start_write() is mostly fine because all accesses to vma->vm_lock_seq that matter are always protected by the VMA lock. There is a racy read in vma_start_read() though that can tolerate false-positives, so we should be using WRITE_ONCE() to keep things tidy and data-race-free (including for KCSAN). On the other side, lock_vma_under_rcu() works as follows in the relevant region for locking and userfaultfd check: lock_vma_under_rcu vma_start_read vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq) [early bailout] down_read_trylock(&vma->vm_lock->lock) vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq) [main check] userfaultfd_armed checks vma->vm_flags & __VM_UFFD_FLAGS Here, the interesting aspect is how far down the mm->mm_lock_seq read can be reordered - if this read is reordered down below the vma->vm_flags access, this could cause lock_vma_under_rcu() to partly operate on information that was read while the VMA was supposed to be locked. To prevent this kind of downwards bleeding of the mm->mm_lock_seq read, we need to read it with a load-acquire. BACKPORT WARNING: One of the functions changed by this patch (which I've written against Linus' tree) is vma_try_start_write(), but this function no longer exists in mm/mm-everything. I don't know whether the merged version of this patch will be ordered before or after the patch that removes vma_try_start_write(). If you're backporting this patch to a tree with vma_try_start_write(), make sure this patch changes that function. Fixes: 5e31275cc997 ("mm: add per-VMA lock and helper functions to control it") Cc: stable@xxxxxxxxxxxxxxx Cc: Suren Baghdasaryan <surenb@xxxxxxxxxx> Signed-off-by: Jann Horn <jannh@xxxxxxxxxx> --- include/linux/mm.h | 21 ++++++++++++++++----- include/linux/mm_types.h | 27 +++++++++++++++++++++++++++ include/linux/mmap_lock.h | 10 ++++++++-- 3 files changed, 51 insertions(+), 7 deletions(-) diff --git a/include/linux/mm.h b/include/linux/mm.h index 2dd73e4f3d8e..beba0bfd43da 100644 --- a/include/linux/mm.h +++ b/include/linux/mm.h @@ -642,7 +642,7 @@ static inline void vma_numab_state_free(struct vm_area_struct *vma) {} static inline bool vma_start_read(struct vm_area_struct *vma) { /* Check before locking. A race might cause false locked result. */ - if (vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq)) + if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq)) return false; if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0)) @@ -653,8 +653,13 @@ static inline bool vma_start_read(struct vm_area_struct *vma) * False unlocked result is impossible because we modify and check * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq * modification invalidates all existing locks. + * + * We must use ACQUIRE semantics for the mm_lock_seq so that if we are + * racing with vma_end_write_all(), we only start reading from the VMA + * after it has been unlocked. + * This pairs with RELEASE semantics in vma_end_write_all(). */ - if (unlikely(vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq))) { + if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) { up_read(&vma->vm_lock->lock); return false; } @@ -676,7 +681,7 @@ static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq) * current task is holding mmap_write_lock, both vma->vm_lock_seq and * mm->mm_lock_seq can't be concurrently modified. */ - *mm_lock_seq = READ_ONCE(vma->vm_mm->mm_lock_seq); + *mm_lock_seq = vma->vm_mm->mm_lock_seq; return (vma->vm_lock_seq == *mm_lock_seq); } @@ -688,7 +693,13 @@ static inline void vma_start_write(struct vm_area_struct *vma) return; down_write(&vma->vm_lock->lock); - vma->vm_lock_seq = mm_lock_seq; + /* + * We should use WRITE_ONCE() here because we can have concurrent reads + * from the early lockless pessimistic check in vma_start_read(). + * We don't really care about the correctness of that early check, but + * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy. + */ + WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq); up_write(&vma->vm_lock->lock); } @@ -702,7 +713,7 @@ static inline bool vma_try_start_write(struct vm_area_struct *vma) if (!down_write_trylock(&vma->vm_lock->lock)) return false; - vma->vm_lock_seq = mm_lock_seq; + WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq); up_write(&vma->vm_lock->lock); return true; } diff --git a/include/linux/mm_types.h b/include/linux/mm_types.h index de10fc797c8e..aa2444966f5f 100644 --- a/include/linux/mm_types.h +++ b/include/linux/mm_types.h @@ -514,6 +514,19 @@ struct vm_area_struct { }; #ifdef CONFIG_PER_VMA_LOCK + /* + * Can only be written (using WRITE_ONCE()) while holding both: + * - mmap_lock (in write mode) + * - vm_lock->lock (in write mode) + * Can be read reliably while holding: + * - vm_lock->lock (in read or write mode) + * Can be read unreliably (for pessimistic bailout) while holding + * nothing (except RCU to keep the VMA struct allocated). + * + * This sequence counter is explicitly allowed to overflow; sequence + * counter reuse can only lead to occasional unnecessary use of the + * slowpath. + */ int vm_lock_seq; struct vma_lock *vm_lock; @@ -679,6 +692,20 @@ struct mm_struct { * by mmlist_lock */ #ifdef CONFIG_PER_VMA_LOCK + /* + * This field has lock-like semantics; see also + * vma->vm_lock_seq. + * Incrementing the sequence number is equivalent to releasing + * locks on VMAs and requires RELEASE semantics; reading the + * sequence number is part of taking a read lock on a VMA and + * requires ACQUIRE semantics. + * + * Can be written (with RELEASE semantics) while holding + * mmap_lock in write mode. + * Can be read (with ACQUIRE semantics) without holding any + * locks on the MM (but you need to have a VMA locked to be able + * to do anything useful with the result). + */ int mm_lock_seq; #endif diff --git a/include/linux/mmap_lock.h b/include/linux/mmap_lock.h index aab8f1b28d26..e05e167dbd16 100644 --- a/include/linux/mmap_lock.h +++ b/include/linux/mmap_lock.h @@ -76,8 +76,14 @@ static inline void mmap_assert_write_locked(struct mm_struct *mm) static inline void vma_end_write_all(struct mm_struct *mm) { mmap_assert_write_locked(mm); - /* No races during update due to exclusive mmap_lock being held */ - WRITE_ONCE(mm->mm_lock_seq, mm->mm_lock_seq + 1); + /* + * Nobody can concurrently modify mm->mm_lock_seq due to exclusive + * mmap_lock being held. + * We need RELEASE semantics here to ensure that preceding stores into + * the VMA take effect before we unlock it with this store. + * Pairs with ACQUIRE semantics in vma_start_read(). + */ + smp_store_release(&mm->mm_lock_seq, mm->mm_lock_seq + 1); } #else static inline void vma_end_write_all(struct mm_struct *mm) {} base-commit: d192f5382581d972c4ae1b4d72e0b59b34cadeb9 -- 2.41.0.487.g6d72f3e995-goog