A global vmap_blocks-xarray array can be contented under heavy usage of the vm_map_ram()/vm_unmap_ram() APIs. The lock_stat shows that a "vmap_blocks.xa_lock" lock is a second in a top-list when it comes to contentions: <snip> ---------------------------------------- class name con-bounces contentions ... ---------------------------------------- vmap_area_lock: 2554079 2554276 ... -------------- vmap_area_lock 1297948 [<00000000dd41cbaa>] alloc_vmap_area+0x1c7/0x910 vmap_area_lock 1256330 [<000000009d927bf3>] free_vmap_block+0x4a/0xe0 vmap_area_lock 1 [<00000000c95c05a7>] find_vm_area+0x16/0x70 -------------- vmap_area_lock 1738590 [<00000000dd41cbaa>] alloc_vmap_area+0x1c7/0x910 vmap_area_lock 815688 [<000000009d927bf3>] free_vmap_block+0x4a/0xe0 vmap_area_lock 1 [<00000000c1d619d7>] __get_vm_area_node+0xd2/0x170 vmap_blocks.xa_lock: 862689 862698 ... ------------------- vmap_blocks.xa_lock 378418 [<00000000625a5626>] vm_map_ram+0x359/0x4a0 vmap_blocks.xa_lock 484280 [<00000000caa2ef03>] xa_erase+0xe/0x30 ------------------- vmap_blocks.xa_lock 576226 [<00000000caa2ef03>] xa_erase+0xe/0x30 vmap_blocks.xa_lock 286472 [<00000000625a5626>] vm_map_ram+0x359/0x4a0 ... <snip> that is a result of running vm_map_ram()/vm_unmap_ram() in a loop. The test creates 64(on 64 CPUs system) threads and each one maps/unmaps 1 page. After this change the "xa_lock" can be considered as a noise in the same test condition: <snip> ... &xa->xa_lock#1: 10333 10394 ... -------------- &xa->xa_lock#1 5349 [<00000000bbbc9751>] xa_erase+0xe/0x30 &xa->xa_lock#1 5045 [<0000000018def45d>] vm_map_ram+0x3a4/0x4f0 -------------- &xa->xa_lock#1 7326 [<0000000018def45d>] vm_map_ram+0x3a4/0x4f0 &xa->xa_lock#1 3068 [<00000000bbbc9751>] xa_erase+0xe/0x30 ... <snip> This patch does not fix vmap_area_lock/free_vmap_area_lock and purge_vmap_area_lock bottle-necks, it is rather a separate rework. v1 - v2: - Add more comments(Andrew Morton req.) - Switch to WARN_ON_ONCE(Lorenzo Stoakes req.) Signed-off-by: Uladzislau Rezki (Sony) <urezki@xxxxxxxxx> --- mm/vmalloc.c | 87 +++++++++++++++++++++++++++++++++++++++------------- 1 file changed, 65 insertions(+), 22 deletions(-) diff --git a/mm/vmalloc.c b/mm/vmalloc.c index 978194dc2bb8..c0f5d87b154d 100644 --- a/mm/vmalloc.c +++ b/mm/vmalloc.c @@ -1908,9 +1908,22 @@ static struct vmap_area *find_unlink_vmap_area(unsigned long addr) #define VMAP_BLOCK 0x2 /* mark out the vmap_block sub-type*/ #define VMAP_FLAGS_MASK 0x3 +/* + * We should probably have a fallback mechanism to allocate virtual memory + * out of partially filled vmap blocks. However vmap block sizing should be + * fairly reasonable according to the vmalloc size, so it shouldn't be a + * big problem. + */ struct vmap_block_queue { spinlock_t lock; struct list_head free; + + /* + * An xarray requires an extra memory dynamically to + * be allocated. If it is an issue, we can use rb-tree + * instead. + */ + struct xarray vmap_blocks; }; struct vmap_block { @@ -1927,25 +1940,47 @@ struct vmap_block { /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); -/* - * XArray of vmap blocks, indexed by address, to quickly find a vmap block - * in the free path. Could get rid of this if we change the API to return a - * "cookie" from alloc, to be passed to free. But no big deal yet. +/** + * In order to fast access to any "vmap_block" associated with a + * specific address, we store them into a per-cpu xarray. A hash + * function is addr_to_vbq() whereas a key is a vb->va->va_start + * value. + * + * Please note, a vmap_block_queue, which is a per-cpu, is not + * serialized by a raw_smp_processor_id() current CPU, instead + * it is chosen based on a CPU-index it belongs to, i.e. it is + * a hash-table. + * + * An example: + * + * CPU_1 CPU_2 CPU_0 + * | | | + * V V V + * 0 10 20 30 40 50 60 + * |------|------|------|------|------|------|...<vmap address space> + * CPU0 CPU1 CPU2 CPU0 CPU1 CPU2 + * + * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus + * it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock; + * + * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus + * it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock; + * + * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus + * it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock. */ -static DEFINE_XARRAY(vmap_blocks); +static struct vmap_block_queue * +addr_to_vbq(unsigned long addr) +{ + int index = (addr / VMAP_BLOCK_SIZE) % num_possible_cpus(); -/* - * We should probably have a fallback mechanism to allocate virtual memory - * out of partially filled vmap blocks. However vmap block sizing should be - * fairly reasonable according to the vmalloc size, so it shouldn't be a - * big problem. - */ + return &per_cpu(vmap_block_queue, index); +} -static unsigned long addr_to_vb_idx(unsigned long addr) +static unsigned long +addr_to_vb_va_start(unsigned long addr) { - addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); - addr /= VMAP_BLOCK_SIZE; - return addr; + return rounddown(addr, VMAP_BLOCK_SIZE); } static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) @@ -1953,7 +1988,7 @@ static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) unsigned long addr; addr = va_start + (pages_off << PAGE_SHIFT); - BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); + WARN_ON_ONCE(addr_to_vb_va_start(addr) != va_start); return (void *)addr; } @@ -1970,7 +2005,6 @@ static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) struct vmap_block_queue *vbq; struct vmap_block *vb; struct vmap_area *va; - unsigned long vb_idx; int node, err; void *vaddr; @@ -2003,8 +2037,8 @@ static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) bitmap_set(vb->used_map, 0, (1UL << order)); INIT_LIST_HEAD(&vb->free_list); - vb_idx = addr_to_vb_idx(va->va_start); - err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask); + vbq = addr_to_vbq(va->va_start); + err = xa_insert(&vbq->vmap_blocks, va->va_start, vb, gfp_mask); if (err) { kfree(vb); free_vmap_area(va); @@ -2021,9 +2055,11 @@ static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) static void free_vmap_block(struct vmap_block *vb) { + struct vmap_block_queue *vbq; struct vmap_block *tmp; - tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start)); + vbq = addr_to_vbq(vb->va->va_start); + tmp = xa_erase(&vbq->vmap_blocks, vb->va->va_start); BUG_ON(tmp != vb); spin_lock(&vmap_area_lock); @@ -2135,6 +2171,7 @@ static void vb_free(unsigned long addr, unsigned long size) unsigned long offset; unsigned int order; struct vmap_block *vb; + struct vmap_block_queue *vbq; BUG_ON(offset_in_page(size)); BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); @@ -2143,7 +2180,10 @@ static void vb_free(unsigned long addr, unsigned long size) order = get_order(size); offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT; - vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr)); + + vbq = addr_to_vbq(addr); + vb = xa_load(&vbq->vmap_blocks, addr_to_vb_va_start(addr)); + spin_lock(&vb->lock); bitmap_clear(vb->used_map, offset, (1UL << order)); spin_unlock(&vb->lock); @@ -3486,6 +3526,7 @@ static void vmap_ram_vread(char *buf, char *addr, int count, unsigned long flags { char *start; struct vmap_block *vb; + struct vmap_block_queue *vbq; unsigned long offset; unsigned int rs, re, n; @@ -3503,7 +3544,8 @@ static void vmap_ram_vread(char *buf, char *addr, int count, unsigned long flags * Area is split into regions and tracked with vmap_block, read out * each region and zero fill the hole between regions. */ - vb = xa_load(&vmap_blocks, addr_to_vb_idx((unsigned long)addr)); + vbq = addr_to_vbq((unsigned long) addr); + vb = xa_load(&vbq->vmap_blocks, addr_to_vb_va_start((unsigned long) addr)); if (!vb) goto finished; @@ -4272,6 +4314,7 @@ void __init vmalloc_init(void) p = &per_cpu(vfree_deferred, i); init_llist_head(&p->list); INIT_WORK(&p->wq, delayed_vfree_work); + xa_init(&vbq->vmap_blocks); } /* Import existing vmlist entries. */ -- 2.30.2