Remove hard coded limit on the maximum number of physical pages per-zspage. This will allow tuning of zsmalloc pool as zspage chain size changes `pages per-zspage` and `objects per-zspage` characteristics of size classes which also affects size classes clustering (the way size classes are merged). Signed-off-by: Sergey Senozhatsky <senozhatsky@xxxxxxxxxxxx> --- .../admin-guide/blockdev/zsmalloc.rst | 157 ++++++++++++++++++ mm/Kconfig | 19 +++ mm/zsmalloc.c | 15 +- 3 files changed, 180 insertions(+), 11 deletions(-) create mode 100644 Documentation/admin-guide/blockdev/zsmalloc.rst diff --git a/Documentation/admin-guide/blockdev/zsmalloc.rst b/Documentation/admin-guide/blockdev/zsmalloc.rst new file mode 100644 index 000000000000..2e238afb1b4b --- /dev/null +++ b/Documentation/admin-guide/blockdev/zsmalloc.rst @@ -0,0 +1,157 @@ +======================================== +zsmalloc allocator +======================================== + +Internals +--------- + +zsmalloc has 255 size classes. Size classes hold a number of zspages, each +zspage can consist of up to ZSMALLOC_CHAIN_SIZE physical (0 order) pages. +The exact (most optimal) zspage chain size is calculated for each size class +during zsmalloc pool creation (see calculate_zspage_chain_size()). + +As a reasonable optimization, zsmalloc merges size classes that have +similar characteristics: number of pages per zspage and number of +objects zspage can store. + +For example, let's look at the following size classes::: + +class size almost_full almost_empty obj_allocated obj_used pages_used pages_per_zspage freeable +.. + 94 1536 0 0 0 0 0 3 0 + 100 1632 0 0 0 0 0 2 0 +.. + +Size classes #95-99 are merged with size class #100. That is, each time +we store an object of size, say, 1568 bytes instead of using class #96 +we end up storing it in size class #100. Class #100 is for objects of +1632 bytes in size, hence every 1568 bytes object wastes 1632-1568 bytes. +Class #100 zspages consist of 2 physical pages and can hold 5 objects. +When we need to store, say, 13 objects of size 1568 we end up allocating +three zspages; in other words, 6 physical pages. + +However, if we'll look closer at size class #96 (which should hold objects +of size 1568 bytes) and trace calculate_zspage_chain_size()::: + + pages per zspage wasted bytes used% + 1 960 76 + 2 352 95 + 3 1312 89 + 4 704 95 + 5 96 99 + +We'd notice that the most optimal zspage configuration for this class is +when it consists of 5 physical pages. A 5 page class #96 configuration +would store 13 objects of size 1568 in a single zspage, allocating 5 physical +pages, as opposed to 6 physical pages that class #100 would allocate otherwise. + +A larger zspage chain size for class #96 also changes its key characteristics: +pages per-zspage and objects per-zspage. As a result we merge less classes. In +other words classes are grouped in a more compact way, which decreases memory +wastage. + +Let's take a closer look at the bottom of /sys/kernel/debug/zsmalloc/zramX/classes::: + +class size almost_full almost_empty obj_allocated obj_used pages_used pages_per_zspage freeable +.. + 202 3264 0 0 0 0 0 4 0 + 254 4096 0 0 0 0 0 1 0 +.. + +For exactly same reason - maximum 4 pages per zspage - the last non-huge +size class is #202, which stores objects of size 3264 bytes. Any object +larger than 3264 bytes, hence, is considered to be huge and lands in size +class #254, which uses a whole physical page to store every object (objects +in huge classes don't share physical pages). + +Another consequence of larger zspages chain sizes is that we move the huge +size class watermark up and as a result have less huge classes and store +large objects in a more compact way. + +For zspage chain size of 8, huge class watermark becomes 3632 bytes::: + +class size almost_full almost_empty obj_allocated obj_used pages_used pages_per_zspage freeable +.. + 202 3264 0 0 0 0 0 4 0 + 211 3408 0 0 0 0 0 5 0 + 217 3504 0 0 0 0 0 6 0 + 222 3584 0 0 0 0 0 7 0 + 225 3632 0 0 0 0 0 8 0 + 254 4096 0 0 0 0 0 1 0 +.. + +For zspage chain size of 16, huge class watermark becomes 3840 bytes::: + +class size almost_full almost_empty obj_allocated obj_used pages_used pages_per_zspage freeable +.. + 202 3264 0 0 0 0 0 4 0 + 206 3328 0 0 0 0 0 13 0 + 207 3344 0 0 0 0 0 9 0 + 208 3360 0 0 0 0 0 14 0 + 211 3408 0 0 0 0 0 5 0 + 212 3424 0 0 0 0 0 16 0 + 214 3456 0 0 0 0 0 11 0 + 217 3504 0 0 0 0 0 6 0 + 219 3536 0 0 0 0 0 13 0 + 222 3584 0 0 0 0 0 7 0 + 223 3600 0 0 0 0 0 15 0 + 225 3632 0 0 0 0 0 8 0 + 228 3680 0 0 0 0 0 9 0 + 230 3712 0 0 0 0 0 10 0 + 232 3744 0 0 0 0 0 11 0 + 234 3776 0 0 0 0 0 12 0 + 235 3792 0 0 0 0 0 13 0 + 236 3808 0 0 0 0 0 14 0 + 238 3840 0 0 0 0 0 15 0 + 254 4096 0 0 0 0 0 1 0 +.. + +Overall the combined zspage chain size effect on zsmalloc pool configuration::: + +pages per zspage number of size classes (clusters) huge size class watermark + 4 69 3264 + 5 86 3408 + 6 93 3504 + 7 112 3584 + 8 123 3632 + 9 140 3680 + 10 143 3712 + 11 159 3744 + 12 164 3776 + 13 180 3792 + 14 183 3808 + 15 188 3840 + 16 191 3840 + +A synthetic test::: + +CONFIG_ZSMALLOC_CHAIN_SIZE=4 + +zsmalloc classes stats + class size almost_full almost_empty obj_allocated obj_used pages_used pages_per_zspage freeable + .. + Total 13 51 413836 412973 159955 3 + +zram mm_stat +1691783168 628083717 655175680 0 655175680 60 0 34048 34049 + +CONFIG_ZSMALLOC_CHAIN_SIZE=8 + +zsmalloc classes stats + class size almost_full almost_empty obj_allocated obj_used pages_used pages_per_zspage freeable + .. + Total 18 87 414852 412978 156666 0 + +zram mm_stat +1691803648 627793930 641703936 0 641703936 60 0 33591 33591 + +Note that for the same amount of data zsmalloc uses less physical pages: down +to 156666 from 159955, and maximum zsmalloc pool memory usage also went down +from 655175680 to 641703936 bytes. + +The obvious downside of larger zspage chains is that some zspages require +more physical pages, which can, in theory, increase system memory pressure +in cases when zspool suffers from heavy internal fragmentation and zspool +compaction cannot relocate objects and release some zspages. In such cases +users are advised to lower zspage chain size limit (CONFIG_ZSMALLOC_CHAIN_SIZE +option). diff --git a/mm/Kconfig b/mm/Kconfig index ff7b209dec05..995a7c4083c2 100644 --- a/mm/Kconfig +++ b/mm/Kconfig @@ -191,6 +191,25 @@ config ZSMALLOC_STAT information to userspace via debugfs. If unsure, say N. +config ZSMALLOC_CHAIN_SIZE + int "Maximum number of physical pages per-zspage" + default 4 + range 1 16 + depends on ZSMALLOC + help + Each zmalloc page (zspage) can consist of 1 or more physical + (0 order) non contiguous pages. This option sets the upper + (hard) limit on that number. + + The exact zspage chain size is calculated for each size class + individually during pool initialisation. Changing this results + in different size classes characteristics (pages per-zspage, + objects per-zspage) which in turn results in different pool + configurations: zsmalloc merges size classes that share key + characteristics. + + Please read zsmalloc documentation for more details. + menu "SLAB allocator options" choice diff --git a/mm/zsmalloc.c b/mm/zsmalloc.c index 9a0f1963b803..34ba97d1175f 100644 --- a/mm/zsmalloc.c +++ b/mm/zsmalloc.c @@ -73,13 +73,6 @@ */ #define ZS_ALIGN 8 -/* - * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) - * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. - */ -#define ZS_MAX_ZSPAGE_ORDER 2 -#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) - #define ZS_HANDLE_SIZE (sizeof(unsigned long)) /* @@ -126,7 +119,7 @@ #define MAX(a, b) ((a) >= (b) ? (a) : (b)) /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ #define ZS_MIN_ALLOC_SIZE \ - MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) + MAX(32, (CONFIG_ZSMALLOC_CHAIN_SIZE << PAGE_SHIFT >> OBJ_INDEX_BITS)) /* each chunk includes extra space to keep handle */ #define ZS_MAX_ALLOC_SIZE PAGE_SIZE @@ -1078,7 +1071,7 @@ static struct zspage *alloc_zspage(struct zs_pool *pool, gfp_t gfp) { int i; - struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; + struct page *pages[CONFIG_ZSMALLOC_CHAIN_SIZE]; struct zspage *zspage = cache_alloc_zspage(pool, gfp); if (!zspage) @@ -1910,7 +1903,7 @@ static void replace_sub_page(struct size_class *class, struct zspage *zspage, struct page *newpage, struct page *oldpage) { struct page *page; - struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; + struct page *pages[CONFIG_ZSMALLOC_CHAIN_SIZE] = {NULL, }; int idx = 0; page = get_first_page(zspage); @@ -2293,7 +2286,7 @@ static int calculate_zspage_chain_size(int class_size) if (is_power_of_2(class_size)) return chain_size; - for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { + for (i = 1; i <= CONFIG_ZSMALLOC_CHAIN_SIZE; i++) { int waste; waste = (i * PAGE_SIZE) % class_size; -- 2.39.0.314.g84b9a713c41-goog