On 10/26/2022 4:16 PM, Kai Huang wrote:
Add documentation for TDX host kernel support. There is already one
file Documentation/x86/tdx.rst containing documentation for TDX guest
internals. Also reuse it for TDX host kernel support.
Introduce a new level menu "TDX Guest Support" and move existing
materials under it, and add a new menu for TDX host kernel support.
Signed-off-by: Kai Huang <kai.huang@xxxxxxxxx>
---
Documentation/x86/tdx.rst | 209 ++++++++++++++++++++++++++++++++++++--
1 file changed, 198 insertions(+), 11 deletions(-)
diff --git a/Documentation/x86/tdx.rst b/Documentation/x86/tdx.rst
index b8fa4329e1a5..59481dbe64b2 100644
--- a/Documentation/x86/tdx.rst
+++ b/Documentation/x86/tdx.rst
@@ -10,6 +10,193 @@ encrypting the guest memory. In TDX, a special module running in a special
mode sits between the host and the guest and manages the guest/host
separation.
+TDX Host Kernel Support
+=======================
+
+TDX introduces a new CPU mode called Secure Arbitration Mode (SEAM) and
+a new isolated range pointed by the SEAM Ranger Register (SEAMRR). A
+CPU-attested software module called 'the TDX module' runs inside the new
+isolated range to provide the functionalities to manage and run protected
+VMs.
+
+TDX also leverages Intel Multi-Key Total Memory Encryption (MKTME) to
+provide crypto-protection to the VMs. TDX reserves part of MKTME KeyIDs
+as TDX private KeyIDs, which are only accessible within the SEAM mode.
+BIOS is responsible for partitioning legacy MKTME KeyIDs and TDX KeyIDs.
+
+Before the TDX module can be used to create and run protected VMs, it
+must be loaded into the isolated range and properly initialized. The TDX
+architecture doesn't require the BIOS to load the TDX module, but the
+kernel assumes it is loaded by the BIOS.
+
+TDX boot-time detection
+-----------------------
+
+The kernel detects TDX by detecting TDX private KeyIDs during kernel
+boot. Below dmesg shows when TDX is enabled by BIOS::
+
+ [..] tdx: TDX enabled by BIOS. TDX private KeyID range: [16, 64).
+
+TDX module detection and initialization
+---------------------------------------
+
+There is no CPUID or MSR to detect the TDX module. The kernel detects it
+by initializing it.
+
+The kernel talks to the TDX module via the new SEAMCALL instruction. The
+TDX module implements SEAMCALL leaf functions to allow the kernel to
+initialize it.
+
+Initializing the TDX module consumes roughly ~1/256th system RAM size to
+use it as 'metadata' for the TDX memory. It also takes additional CPU
+time to initialize those metadata along with the TDX module itself. Both
+are not trivial. The kernel initializes the TDX module at runtime on
+demand. The caller to call tdx_enable() to initialize the TDX module::
+
+ ret = tdx_enable();
+ if (ret)
+ goto no_tdx;
+ // TDX is ready to use
+
+Initializing the TDX module requires all logical CPUs being online.
+tdx_enable() internally temporarily disables CPU hotplug to prevent any
+CPU from going offline, but the caller still needs to guarantee all
+present CPUs are online before calling tdx_enable().
+
+Also, tdx_enable() requires all CPUs are already in VMX operation
+(requirement of making SEAMCALL). Currently, tdx_enable() doesn't handle
+VMXON internally, but depends on the caller to guarantee that. So far
+KVM is the only user of TDX and KVM already handles VMXON.
+
+User can consult dmesg to see the presence of the TDX module, and whether
+it has been initialized.
+
+If the TDX module is not loaded, dmesg shows below::
+
+ [..] tdx: TDX module is not loaded.
+
+If the TDX module is initialized successfully, dmesg shows something
+like below::
+
+ [..] tdx: TDX module: attributes 0x0, vendor_id 0x8086, major_version 1, minor_version 0, build_date 20211209, build_num 160
+ [..] tdx: 65667 pages allocated for PAMT.
+ [..] tdx: TDX module initialized.
+
+If the TDX module failed to initialize, dmesg shows below::
+
+ [..] tdx: Failed to initialize TDX module. Shut it down.
+
+TDX Interaction to Other Kernel Components
+------------------------------------------
+
+TDX Memory Policy
+~~~~~~~~~~~~~~~~~
+
+The TDX module reports a list of "Convertible Memory Region" (CMR) to
+indicate which memory regions are TDX-capable. Those regions are
+generated by BIOS and verified by the MCHECK so that they are truly
+present during platform boot and can meet security guarantees.
+
+However those TDX convertible memory regions are not automatically usable
+to the TDX module. The kernel needs to choose all TDX-usable memory
+regions and pass those regions to the TDX module when initializing it.
+After TDX module is initialized, no more TDX-usable memory can be added
+to the TDX module.
+
+To keep things simple, this initial implementation chooses to use all
+boot-time present memory managed by the page allocator as TDX memory.
+This _requires_ all boot-time present memory is TDX convertible memory,
+which is true in practice. If there's any boot-time memory isn't TDX
+convertible memory (which is allowed from TDX architecture's point of
+view), it will be caught later during TDX module initialization and the
+initialization will fail.
+
+However one machine may support both TDX and non-TDX memory both at
+machine boot time and runtime. For example, any memory hot-added at
+runtime cannot be TDX memory. Also, for now NVDIMM and CXL memory are
+not TDX memory, no matter whether they are present at machine boot time
+or not.
+
+This raises a problem that, if any non-TDX memory is hot-added to the
+system-wide memory allocation pool, a non-TDX page may be allocated to a
+TDX guest, which will result in failing to create the TDX guest, or
+killing it at runtime.
+
+The current implementation doesn't explicitly prevent adding any non-TDX
+memory to system-wide memory pool, but depends on the machine owner to
+make sure such operation won't happen. For example, the machine owner
+should never plug any NVDIMM or CXL memory to the machine, or use kmem
+driver to hot-add any to the core-mm.
I assume that will be fixed in some form, so doesn't need to be in the
documentation.
+
+To keep things simple, this series doesn't handle memory hotplug at all,
+but depends on the machine owner to not do any memory hotplug operation.
+For example, the machine owner should not plug any NVDIMM or CXL memory
+into the machine, or use kmem driver to plug NVDIMM or CXL memory to the
+core-mm.
Dito. Documentation/* shouldn't contain temporary things like a commit log.