On 25 Aug 2022, at 17:30, alexlzhu@xxxxxx wrote: > From: Alexander Zhu <alexlzhu@xxxxxx> > > This change introduces a tool that scans through all of physical > memory for anonymous THPs and groups them into buckets based > on utilization. It also includes an interface under > /sys/kernel/debug/thp_utilization. > > Sample Output: > > Utilized[0-50]: 1331 680884 > Utilized[51-101]: 9 3983 > Utilized[102-152]: 3 1187 > Utilized[153-203]: 0 0 > Utilized[204-255]: 2 539 > Utilized[256-306]: 5 1135 > Utilized[307-357]: 1 192 > Utilized[358-408]: 0 0 > Utilized[409-459]: 1 57 > Utilized[460-512]: 400 13 > Last Scan Time: 223.98 > Last Scan Duration: 70.65 How large is the memory? Just wonder the scanning speed. Also, it might be better to explicitly add the time unit, second, in the output. > > This indicates that there are 1331 THPs that have between 0 and 50 > utilized (non zero) pages. In total there are 680884 zero pages in > this utilization bucket. THPs in the [0-50] bucket compose 76% of total > THPs, and are responsible for 99% of total zero pages across all > THPs. In other words, the least utilized THPs are responsible for almost > all of the memory waste when THP is always enabled. Similar results > have been observed across production workloads. > > The last two lines indicate the timestamp and duration of the most recent > scan through all of physical memory. Here we see that the last scan > occurred 223.98 seconds after boot time and took 70.65 seconds. > > Utilization of a THP is defined as the percentage of nonzero > pages in the THP. The worker thread will scan through all > of physical memory and obtain utilization of all anonymous > THPs. It will gather this information by periodically scanning > through all of physical memory for anonymous THPs, group them > into buckets based on utilization, and report utilization > information through debugfs under /sys/kernel/debug/thp_utilization. > > Signed-off-by: Alexander Zhu <alexlzhu@xxxxxx> > --- > Documentation/admin-guide/mm/transhuge.rst | 9 + > include/linux/huge_mm.h | 2 + > mm/huge_memory.c | 198 +++++++++++++++++++++ > 3 files changed, 209 insertions(+) > > diff --git a/Documentation/admin-guide/mm/transhuge.rst b/Documentation/admin-guide/mm/transhuge.rst > index c9c37f16eef8..d883ff9fddc7 100644 > --- a/Documentation/admin-guide/mm/transhuge.rst > +++ b/Documentation/admin-guide/mm/transhuge.rst > @@ -297,6 +297,15 @@ To identify what applications are mapping file transparent huge pages, it > is necessary to read ``/proc/PID/smaps`` and count the FileHugeMapped fields > for each mapping. > > +The utilization of transparent hugepages can be viewed by reading > +``/sys/kernel/debug/thp_utilization``. The utilization of a THP is defined > +as the ratio of non zero filled 4kb pages to the total number of pages in a > +THP. The buckets are labelled by the range of total utilized 4kb pages with > +one line per utilization bucket. Each line contains the total number of > +THPs in that bucket and the total number of zero filled 4kb pages summed > +over all THPs in that bucket. The last two lines show the timestamp and > +duration respectively of the most recent scan over all of physical memory. > + > Note that reading the smaps file is expensive and reading it > frequently will incur overhead. > > diff --git a/include/linux/huge_mm.h b/include/linux/huge_mm.h > index 768e5261fdae..c9086239deb7 100644 > --- a/include/linux/huge_mm.h > +++ b/include/linux/huge_mm.h > @@ -179,6 +179,8 @@ bool hugepage_vma_check(struct vm_area_struct *vma, > unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, > unsigned long len, unsigned long pgoff, unsigned long flags); > > +int thp_number_utilized_pages(struct page *page); > + > void prep_transhuge_page(struct page *page); > void free_transhuge_page(struct page *page); > > diff --git a/mm/huge_memory.c b/mm/huge_memory.c > index 8a7c1b344abe..8be1e320e70c 100644 > --- a/mm/huge_memory.c > +++ b/mm/huge_memory.c > @@ -45,6 +45,21 @@ > #define CREATE_TRACE_POINTS > #include <trace/events/thp.h> > > +/* > + * The number of utilization buckets THPs will be grouped in > + * under /sys/kernel/debug/thp_utilization. > + */ > +#define THP_UTIL_BUCKET_NR 10 > +/* > + * The maximum number of hugepages to scan through on each periodic > + * run of the scanner that generates /sys/kernel/debug/thp_utilization. > + * We scan through physical memory in chunks of size PMD_SIZE and > + * record the timestamp and duration of each scan. In practice we have > + * found that scanning THP_UTIL_SCAN_SIZE hugepages per second is sufficient > + * for obtaining useful utilization metrics and does not have a noticeable > + * impact on CPU. > + */ > +#define THP_UTIL_SCAN_SIZE 256 > /* > * By default, transparent hugepage support is disabled in order to avoid > * risking an increased memory footprint for applications that are not > @@ -70,6 +85,25 @@ static atomic_t huge_zero_refcount; > struct page *huge_zero_page __read_mostly; > unsigned long huge_zero_pfn __read_mostly = ~0UL; > > +static void thp_utilization_workfn(struct work_struct *work); > +static DECLARE_DELAYED_WORK(thp_utilization_work, thp_utilization_workfn); > + > +struct thp_scan_info_bucket { > + int nr_thps; > + int nr_zero_pages; > +}; > + > +struct thp_scan_info { > + struct thp_scan_info_bucket buckets[THP_UTIL_BUCKET_NR]; > + struct zone *scan_zone; > + struct timespec64 last_scan_duration; > + struct timespec64 last_scan_time; > + unsigned long pfn; > +}; > + > +static struct thp_scan_info thp_scan_debugfs; > +static struct thp_scan_info thp_scan; > + > bool hugepage_vma_check(struct vm_area_struct *vma, > unsigned long vm_flags, > bool smaps, bool in_pf) > @@ -486,6 +520,7 @@ static int __init hugepage_init(void) > if (err) > goto err_slab; > > + schedule_delayed_work(&thp_utilization_work, HZ); > err = register_shrinker(&huge_zero_page_shrinker, "thp-zero"); > if (err) > goto err_hzp_shrinker; > @@ -600,6 +635,11 @@ static inline bool is_transparent_hugepage(struct page *page) > page[1].compound_dtor == TRANSHUGE_PAGE_DTOR; > } > > +static inline bool is_anon_transparent_hugepage(struct page *page) > +{ > + return PageAnon(page) && is_transparent_hugepage(page); > +} > + > static unsigned long __thp_get_unmapped_area(struct file *filp, > unsigned long addr, unsigned long len, > loff_t off, unsigned long flags, unsigned long size) > @@ -650,6 +690,38 @@ unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, > } > EXPORT_SYMBOL_GPL(thp_get_unmapped_area); > > +int thp_number_utilized_pages(struct page *page) > +{ > + struct folio *folio; > + unsigned long page_offset, value; > + int thp_nr_utilized_pages = HPAGE_PMD_NR; > + int step_size = sizeof(unsigned long); > + bool is_all_zeroes; > + void *kaddr; > + int i; > + > + if (!page || !is_anon_transparent_hugepage(page)) > + return -1; > + > + folio = page_folio(page); > + for (i = 0; i < folio_nr_pages(folio); i++) { > + kaddr = kmap_local_folio(folio, i); > + is_all_zeroes = true; > + for (page_offset = 0; page_offset < PAGE_SIZE; page_offset += step_size) { > + value = *(unsigned long *)(kaddr + page_offset); Is it possible to use cache-bypassing read to avoid cache pollution? You are scanning for 256*2M at a time. Wouldn’t that wipe out all the useful data in the cache? > + if (value != 0) { > + is_all_zeroes = false; > + break; > + } > + } > + if (is_all_zeroes) > + thp_nr_utilized_pages--; > + > + kunmap_local(kaddr); > + } > + return thp_nr_utilized_pages; > +} > + > static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf, > struct page *page, gfp_t gfp) > { > @@ -3135,6 +3207,42 @@ static int __init split_huge_pages_debugfs(void) > return 0; > } > late_initcall(split_huge_pages_debugfs); > + > +static int thp_utilization_show(struct seq_file *seqf, void *pos) > +{ > + int i; > + int start; > + int end; > + > + for (i = 0; i < THP_UTIL_BUCKET_NR; i++) { > + start = i * HPAGE_PMD_NR / THP_UTIL_BUCKET_NR; > + end = (i + 1 == THP_UTIL_BUCKET_NR) > + ? HPAGE_PMD_NR > + : ((i + 1) * HPAGE_PMD_NR / THP_UTIL_BUCKET_NR - 1); > + /* The last bucket will need to contain 100 */ > + seq_printf(seqf, "Utilized[%d-%d]: %d %d\n", start, end, > + thp_scan_debugfs.buckets[i].nr_thps, > + thp_scan_debugfs.buckets[i].nr_zero_pages); > + } > + seq_printf(seqf, "Last Scan Time: %lu.%02lu\n", > + (unsigned long)thp_scan_debugfs.last_scan_time.tv_sec, > + (thp_scan_debugfs.last_scan_time.tv_nsec / (NSEC_PER_SEC / 100))); > + > + seq_printf(seqf, "Last Scan Duration: %lu.%02lu\n", > + (unsigned long)thp_scan_debugfs.last_scan_duration.tv_sec, > + (thp_scan_debugfs.last_scan_duration.tv_nsec / (NSEC_PER_SEC / 100))); > + > + return 0; > +} > +DEFINE_SHOW_ATTRIBUTE(thp_utilization); > + > +static int __init thp_utilization_debugfs(void) > +{ > + debugfs_create_file("thp_utilization", 0200, NULL, NULL, > + &thp_utilization_fops); > + return 0; > +} > +late_initcall(thp_utilization_debugfs); > #endif > > #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION > @@ -3220,3 +3328,93 @@ void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) > trace_remove_migration_pmd(address, pmd_val(pmde)); > } > #endif > + > +static void thp_scan_next_zone(void) > +{ > + struct timespec64 current_time; > + int i; > + bool update_debugfs; > + /* > + * THP utilization worker thread has reached the end > + * of the memory zone. Proceed to the next zone. > + */ > + thp_scan.scan_zone = next_zone(thp_scan.scan_zone); > + update_debugfs = !thp_scan.scan_zone; > + thp_scan.scan_zone = update_debugfs ? (first_online_pgdat())->node_zones > + : thp_scan.scan_zone; > + thp_scan.pfn = (thp_scan.scan_zone->zone_start_pfn + HPAGE_PMD_NR - 1) > + & ~(HPAGE_PMD_SIZE - 1); > + if (!update_debugfs) > + return; > + /* > + * If the worker has scanned through all of physical > + * memory. Then update information displayed in /sys/kernel/debug/thp_utilization > + */ > + ktime_get_ts64(¤t_time); > + thp_scan_debugfs.last_scan_duration = timespec64_sub(current_time, > + thp_scan_debugfs.last_scan_time); > + thp_scan_debugfs.last_scan_time = current_time; > + > + for (i = 0; i < THP_UTIL_BUCKET_NR; i++) { > + thp_scan_debugfs.buckets[i].nr_thps = thp_scan.buckets[i].nr_thps; > + thp_scan_debugfs.buckets[i].nr_zero_pages = thp_scan.buckets[i].nr_zero_pages; > + thp_scan.buckets[i].nr_thps = 0; > + thp_scan.buckets[i].nr_zero_pages = 0; > + } > +} > + > +static void thp_util_scan(unsigned long pfn_end) > +{ > + struct page *page = NULL; > + int bucket, num_utilized_pages, current_pfn; > + int i; > + /* > + * Scan through each memory zone in chunks of up to THP_UTIL_SCAN_SIZE > + * hugepages every second looking for anonymous THPs. > + */ > + for (i = 0; i < THP_UTIL_SCAN_SIZE; i++) { > + current_pfn = thp_scan.pfn; > + thp_scan.pfn += HPAGE_PMD_NR; > + if (current_pfn >= pfn_end) > + return; > + > + if (!pfn_valid(current_pfn)) > + continue; > + > + page = pfn_to_page(current_pfn); > + num_utilized_pages = thp_number_utilized_pages(page); > + /* Not a THP; skip it. */ > + if (num_utilized_pages < 0) > + continue; > + /* Group THPs into utilization buckets */ > + bucket = num_utilized_pages * THP_UTIL_BUCKET_NR / HPAGE_PMD_NR; > + bucket = min(bucket, THP_UTIL_BUCKET_NR - 1); > + thp_scan.buckets[bucket].nr_thps++; > + thp_scan.buckets[bucket].nr_zero_pages += (HPAGE_PMD_NR - num_utilized_pages); > + } > +} > + > +static void thp_utilization_workfn(struct work_struct *work) > +{ > + unsigned long pfn_end; > + > + if (!thp_scan.scan_zone) > + thp_scan.scan_zone = (first_online_pgdat())->node_zones; > + /* > + * Worker function that scans through all of physical memory > + * for anonymous THPs. > + */ > + pfn_end = (thp_scan.scan_zone->zone_start_pfn + > + thp_scan.scan_zone->spanned_pages + HPAGE_PMD_NR - 1) > + & ~(HPAGE_PMD_SIZE - 1); > + /* If we have reached the end of the zone or end of physical memory > + * move on to the next zone. Otherwise, scan the next PFNs in the > + * current zone. > + */ > + if (!populated_zone(thp_scan.scan_zone) || thp_scan.pfn >= pfn_end) > + thp_scan_next_zone(); > + else > + thp_util_scan(pfn_end); > + > + schedule_delayed_work(&thp_utilization_work, HZ); > +} > -- > 2.30.2 -- Best Regards, Yan, Zi
Attachment:
signature.asc
Description: OpenPGP digital signature