"Aneesh Kumar K.V" <aneesh.kumar@xxxxxxxxxxxxx> writes: > This patch switch the demotion target building logic to use memory tiers > instead of NUMA distance. All N_MEMORY NUMA nodes will be placed in the > default memory tier and additional memory tiers will be added by drivers like > dax kmem. > > This patch builds the demotion target for a NUMA node by looking at all > memory tiers below the tier to which the NUMA node belongs. The closest node > in the immediately following memory tier is used as a demotion target. > > Since we are now only building demotion target for N_MEMORY NUMA nodes > the CPU hotplug calls are removed in this patch. > > Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@xxxxxxxxxxxxx> > --- > include/linux/memory-tiers.h | 13 ++ > include/linux/migrate.h | 13 -- > mm/memory-tiers.c | 221 +++++++++++++++++++- > mm/migrate.c | 394 ----------------------------------- > mm/vmstat.c | 4 - > 5 files changed, 233 insertions(+), 412 deletions(-) > > diff --git a/include/linux/memory-tiers.h b/include/linux/memory-tiers.h > index 4f4baf0bf430..e56a57c6ef78 100644 > --- a/include/linux/memory-tiers.h > +++ b/include/linux/memory-tiers.h > @@ -31,6 +31,14 @@ struct memory_dev_type { > #ifdef CONFIG_NUMA > extern bool numa_demotion_enabled; > struct memory_dev_type *init_node_memory_type(int node, struct memory_dev_type *default_type); > +#ifdef CONFIG_MIGRATION > +int next_demotion_node(int node); > +#else > +static inline int next_demotion_node(int node) > +{ > + return NUMA_NO_NODE; > +} > +#endif > > #else > > @@ -39,5 +47,10 @@ static inline struct memory_dev_type *init_node_memory_type(int node, struct mem > { > return ERR_PTR(-EINVAL); > } > + > +static inline int next_demotion_node(int node) > +{ > + return NUMA_NO_NODE; > +} > #endif /* CONFIG_NUMA */ > #endif /* _LINUX_MEMORY_TIERS_H */ > diff --git a/include/linux/migrate.h b/include/linux/migrate.h > index 43e737215f33..93fab62e6548 100644 > --- a/include/linux/migrate.h > +++ b/include/linux/migrate.h > @@ -75,19 +75,6 @@ static inline int migrate_huge_page_move_mapping(struct address_space *mapping, > > #endif /* CONFIG_MIGRATION */ > > -#if defined(CONFIG_MIGRATION) && defined(CONFIG_NUMA) > -extern void set_migration_target_nodes(void); > -extern void migrate_on_reclaim_init(void); > -extern int next_demotion_node(int node); > -#else > -static inline void set_migration_target_nodes(void) {} > -static inline void migrate_on_reclaim_init(void) {} > -static inline int next_demotion_node(int node) > -{ > - return NUMA_NO_NODE; > -} > -#endif > - > #ifdef CONFIG_COMPACTION > extern int PageMovable(struct page *page); > extern void __SetPageMovable(struct page *page, struct address_space *mapping); > diff --git a/mm/memory-tiers.c b/mm/memory-tiers.c > index 109be75fa554..60845aa74afc 100644 > --- a/mm/memory-tiers.c > +++ b/mm/memory-tiers.c > @@ -2,8 +2,11 @@ > #include <linux/slab.h> > #include <linux/lockdep.h> > #include <linux/memory.h> > +#include <linux/random.h> > #include <linux/memory-tiers.h> > > +#include "internal.h" > + > struct memory_tier { > /* hierarchy of memory tiers */ > struct list_head list; > @@ -17,9 +20,74 @@ struct memory_tier { > int adistance_start; > }; > > +struct demotion_nodes { > + nodemask_t preferred; > +}; > + > static DEFINE_MUTEX(memory_tier_lock); > static LIST_HEAD(memory_tiers); > struct memory_dev_type *node_memory_types[MAX_NUMNODES]; > +#ifdef CONFIG_MIGRATION > +/* > + * node_demotion[] examples: > + * > + * Example 1: > + * > + * Node 0 & 1 are CPU + DRAM nodes, node 2 & 3 are PMEM nodes. > + * > + * node distances: > + * node 0 1 2 3 > + * 0 10 20 30 40 > + * 1 20 10 40 30 > + * 2 30 40 10 40 > + * 3 40 30 40 10 > + * > + * memory_tiers0 = 0-1 > + * memory_tiers1 = 2-3 > + * > + * node_demotion[0].preferred = 2 > + * node_demotion[1].preferred = 3 > + * node_demotion[2].preferred = <empty> > + * node_demotion[3].preferred = <empty> > + * > + * Example 2: > + * > + * Node 0 & 1 are CPU + DRAM nodes, node 2 is memory-only DRAM node. > + * > + * node distances: > + * node 0 1 2 > + * 0 10 20 30 > + * 1 20 10 30 > + * 2 30 30 10 > + * > + * memory_tiers0 = 0-2 > + * > + * node_demotion[0].preferred = <empty> > + * node_demotion[1].preferred = <empty> > + * node_demotion[2].preferred = <empty> > + * > + * Example 3: > + * > + * Node 0 is CPU + DRAM nodes, Node 1 is HBM node, node 2 is PMEM node. > + * > + * node distances: > + * node 0 1 2 > + * 0 10 20 30 > + * 1 20 10 40 > + * 2 30 40 10 > + * > + * memory_tiers0 = 1 > + * memory_tiers1 = 0 > + * memory_tiers2 = 2 > + * > + * node_demotion[0].preferred = 2 > + * node_demotion[1].preferred = 0 > + * node_demotion[2].preferred = <empty> > + * > + */ > +static struct demotion_nodes *node_demotion __read_mostly; > +#endif /* CONFIG_MIGRATION */ > + > /* > * For now let's have 4 memory tier below default DRAM tier. > */ > @@ -82,6 +150,144 @@ static struct memory_tier *__node_get_memory_tier(int node) > return NULL; > } > > +#ifdef CONFIG_MIGRATION > +/** > + * next_demotion_node() - Get the next node in the demotion path > + * @node: The starting node to lookup the next node > + * > + * Return: node id for next memory node in the demotion path hierarchy > + * from @node; NUMA_NO_NODE if @node is terminal. This does not keep > + * @node online or guarantee that it *continues* to be the next demotion > + * target. > + */ > +int next_demotion_node(int node) > +{ > + struct demotion_nodes *nd; > + int target; > + > + if (!node_demotion) > + return NUMA_NO_NODE; > + > + nd = &node_demotion[node]; > + > + /* > + * node_demotion[] is updated without excluding this > + * function from running. > + * > + * Make sure to use RCU over entire code blocks if > + * node_demotion[] reads need to be consistent. > + */ > + rcu_read_lock(); > + /* > + * If there are multiple target nodes, just select one > + * target node randomly. > + * > + * In addition, we can also use round-robin to select > + * target node, but we should introduce another variable > + * for node_demotion[] to record last selected target node, > + * that may cause cache ping-pong due to the changing of > + * last target node. Or introducing per-cpu data to avoid > + * caching issue, which seems more complicated. So selecting > + * target node randomly seems better until now. > + */ > + target = node_random(&nd->preferred); Don't find code to optimize node_random() for weight == 1 case, forget to do that? Best Regards, Huang, Ying > + rcu_read_unlock(); > + > + return target; > +} > + > +static void disable_all_demotion_targets(void) > +{ > + int node; > + > + for_each_node_state(node, N_MEMORY) > + node_demotion[node].preferred = NODE_MASK_NONE; > + /* > + * Ensure that the "disable" is visible across the system. > + * Readers will see either a combination of before+disable > + * state or disable+after. They will never see before and > + * after state together. > + */ > + synchronize_rcu(); > +} > + > +static __always_inline nodemask_t get_memtier_nodemask(struct memory_tier *memtier) > +{ > + nodemask_t nodes = NODE_MASK_NONE; > + struct memory_dev_type *memtype; > + > + list_for_each_entry(memtype, &memtier->memory_types, tier_sibiling) > + nodes_or(nodes, nodes, memtype->nodes); > + > + return nodes; > +} > + > +/* > + * Find an automatic demotion target for all memory > + * nodes. Failing here is OK. It might just indicate > + * being at the end of a chain. > + */ > +static void establish_demotion_targets(void) > +{ > + struct memory_tier *memtier; > + struct demotion_nodes *nd; > + int target = NUMA_NO_NODE, node; > + int distance, best_distance; > + nodemask_t tier_nodes; > + > + lockdep_assert_held_once(&memory_tier_lock); > + > + if (!node_demotion || !IS_ENABLED(CONFIG_MIGRATION)) > + return; > + > + disable_all_demotion_targets(); > + > + for_each_node_state(node, N_MEMORY) { > + best_distance = -1; > + nd = &node_demotion[node]; > + > + memtier = __node_get_memory_tier(node); > + if (!memtier || list_is_first(&memtier->list, &memory_tiers)) > + continue; > + /* > + * Get the lower memtier to find the demotion node list. > + */ > + memtier = list_prev_entry(memtier, list); > + tier_nodes = get_memtier_nodemask(memtier); > + /* > + * find_next_best_node, use 'used' nodemask as a skip list. > + * Add all memory nodes except the selected memory tier > + * nodelist to skip list so that we find the best node from the > + * memtier nodelist. > + */ > + nodes_andnot(tier_nodes, node_states[N_MEMORY], tier_nodes); > + > + /* > + * Find all the nodes in the memory tier node list of same best distance. > + * add them to the preferred mask. We randomly select between nodes > + * in the preferred mask when allocating pages during demotion. > + */ > + do { > + target = find_next_best_node(node, &tier_nodes); > + if (target == NUMA_NO_NODE) > + break; > + > + distance = node_distance(node, target); > + if (distance == best_distance || best_distance == -1) { > + best_distance = distance; > + node_set(target, nd->preferred); > + } else { > + break; > + } > + } while (1); > + } > +} > + > +#else > +static inline void disable_all_demotion_targets(void) {} > +static inline void establish_demotion_targets(void) {} > +#endif /* CONFIG_MIGRATION */ > + > static void init_node_memory_tier(int node) > { > struct memory_tier *memtier; > @@ -89,6 +295,13 @@ static void init_node_memory_tier(int node) > mutex_lock(&memory_tier_lock); > > memtier = __node_get_memory_tier(node); > + /* > + * if node is already part of the tier proceed with the > + * current tier value, because we might want to establish > + * new migration paths now. The node might be added to a tier > + * before it was made part of N_MEMORY, hence estabilish_demotion_targets > + * will have skipped this node. > + */ > if (!memtier) { > struct memory_dev_type *memtype; > > @@ -99,6 +312,7 @@ static void init_node_memory_tier(int node) > memtype = node_memory_types[node]; > memtier = find_create_memory_tier(memtype); > } > + establish_demotion_targets(); > mutex_unlock(&memory_tier_lock); > } > > @@ -125,6 +339,7 @@ static void clear_node_memory_tier(int node) > if (list_empty(¤t_memtier->memory_types)) > destroy_memory_tier(current_memtier); > } > + establish_demotion_targets(); > } > mutex_unlock(&memory_tier_lock); > } > @@ -182,7 +397,11 @@ static int __init memory_tier_init(void) > panic("%s() failed to register memory tier: %ld\n", > __func__, PTR_ERR(memtier)); > mutex_unlock(&memory_tier_lock); > - > +#ifdef CONFIG_MIGRATION > + node_demotion = kcalloc(MAX_NUMNODES, sizeof(struct demotion_nodes), > + GFP_KERNEL); > + WARN_ON(!node_demotion); > +#endif > hotplug_memory_notifier(memtier_hotplug_callback, MEMTIER_HOTPLUG_PRIO); > return 0; > } > diff --git a/mm/migrate.c b/mm/migrate.c > index fce7d4a9e940..c758c9c21d7d 100644 > --- a/mm/migrate.c > +++ b/mm/migrate.c > @@ -2117,398 +2117,4 @@ int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, > return 0; > } > #endif /* CONFIG_NUMA_BALANCING */ > - > -/* > - * node_demotion[] example: > - * > - * Consider a system with two sockets. Each socket has > - * three classes of memory attached: fast, medium and slow. > - * Each memory class is placed in its own NUMA node. The > - * CPUs are placed in the node with the "fast" memory. The > - * 6 NUMA nodes (0-5) might be split among the sockets like > - * this: > - * > - * Socket A: 0, 1, 2 > - * Socket B: 3, 4, 5 > - * > - * When Node 0 fills up, its memory should be migrated to > - * Node 1. When Node 1 fills up, it should be migrated to > - * Node 2. The migration path start on the nodes with the > - * processors (since allocations default to this node) and > - * fast memory, progress through medium and end with the > - * slow memory: > - * > - * 0 -> 1 -> 2 -> stop > - * 3 -> 4 -> 5 -> stop > - * > - * This is represented in the node_demotion[] like this: > - * > - * { nr=1, nodes[0]=1 }, // Node 0 migrates to 1 > - * { nr=1, nodes[0]=2 }, // Node 1 migrates to 2 > - * { nr=0, nodes[0]=-1 }, // Node 2 does not migrate > - * { nr=1, nodes[0]=4 }, // Node 3 migrates to 4 > - * { nr=1, nodes[0]=5 }, // Node 4 migrates to 5 > - * { nr=0, nodes[0]=-1 }, // Node 5 does not migrate > - * > - * Moreover some systems may have multiple slow memory nodes. > - * Suppose a system has one socket with 3 memory nodes, node 0 > - * is fast memory type, and node 1/2 both are slow memory > - * type, and the distance between fast memory node and slow > - * memory node is same. So the migration path should be: > - * > - * 0 -> 1/2 -> stop > - * > - * This is represented in the node_demotion[] like this: > - * { nr=2, {nodes[0]=1, nodes[1]=2} }, // Node 0 migrates to node 1 and node 2 > - * { nr=0, nodes[0]=-1, }, // Node 1 dose not migrate > - * { nr=0, nodes[0]=-1, }, // Node 2 does not migrate > - */ > - > -/* > - * Writes to this array occur without locking. Cycles are > - * not allowed: Node X demotes to Y which demotes to X... > - * > - * If multiple reads are performed, a single rcu_read_lock() > - * must be held over all reads to ensure that no cycles are > - * observed. > - */ > -#define DEFAULT_DEMOTION_TARGET_NODES 15 > - > -#if MAX_NUMNODES < DEFAULT_DEMOTION_TARGET_NODES > -#define DEMOTION_TARGET_NODES (MAX_NUMNODES - 1) > -#else > -#define DEMOTION_TARGET_NODES DEFAULT_DEMOTION_TARGET_NODES > -#endif > - > -struct demotion_nodes { > - unsigned short nr; > - short nodes[DEMOTION_TARGET_NODES]; > -}; > - > -static struct demotion_nodes *node_demotion __read_mostly; > - > -/** > - * next_demotion_node() - Get the next node in the demotion path > - * @node: The starting node to lookup the next node > - * > - * Return: node id for next memory node in the demotion path hierarchy > - * from @node; NUMA_NO_NODE if @node is terminal. This does not keep > - * @node online or guarantee that it *continues* to be the next demotion > - * target. > - */ > -int next_demotion_node(int node) > -{ > - struct demotion_nodes *nd; > - unsigned short target_nr, index; > - int target; > - > - if (!node_demotion) > - return NUMA_NO_NODE; > - > - nd = &node_demotion[node]; > - > - /* > - * node_demotion[] is updated without excluding this > - * function from running. RCU doesn't provide any > - * compiler barriers, so the READ_ONCE() is required > - * to avoid compiler reordering or read merging. > - * > - * Make sure to use RCU over entire code blocks if > - * node_demotion[] reads need to be consistent. > - */ > - rcu_read_lock(); > - target_nr = READ_ONCE(nd->nr); > - > - switch (target_nr) { > - case 0: > - target = NUMA_NO_NODE; > - goto out; > - case 1: > - index = 0; > - break; > - default: > - /* > - * If there are multiple target nodes, just select one > - * target node randomly. > - * > - * In addition, we can also use round-robin to select > - * target node, but we should introduce another variable > - * for node_demotion[] to record last selected target node, > - * that may cause cache ping-pong due to the changing of > - * last target node. Or introducing per-cpu data to avoid > - * caching issue, which seems more complicated. So selecting > - * target node randomly seems better until now. > - */ > - index = get_random_int() % target_nr; > - break; > - } > - > - target = READ_ONCE(nd->nodes[index]); > - > -out: > - rcu_read_unlock(); > - return target; > -} > - > -/* Disable reclaim-based migration. */ > -static void __disable_all_migrate_targets(void) > -{ > - int node, i; > - > - if (!node_demotion) > - return; > - > - for_each_online_node(node) { > - node_demotion[node].nr = 0; > - for (i = 0; i < DEMOTION_TARGET_NODES; i++) > - node_demotion[node].nodes[i] = NUMA_NO_NODE; > - } > -} > - > -static void disable_all_migrate_targets(void) > -{ > - __disable_all_migrate_targets(); > - > - /* > - * Ensure that the "disable" is visible across the system. > - * Readers will see either a combination of before+disable > - * state or disable+after. They will never see before and > - * after state together. > - * > - * The before+after state together might have cycles and > - * could cause readers to do things like loop until this > - * function finishes. This ensures they can only see a > - * single "bad" read and would, for instance, only loop > - * once. > - */ > - synchronize_rcu(); > -} > - > -/* > - * Find an automatic demotion target for 'node'. > - * Failing here is OK. It might just indicate > - * being at the end of a chain. > - */ > -static int establish_migrate_target(int node, nodemask_t *used, > - int best_distance) > -{ > - int migration_target, index, val; > - struct demotion_nodes *nd; > - > - if (!node_demotion) > - return NUMA_NO_NODE; > - > - nd = &node_demotion[node]; > - > - migration_target = find_next_best_node(node, used); > - if (migration_target == NUMA_NO_NODE) > - return NUMA_NO_NODE; > - > - /* > - * If the node has been set a migration target node before, > - * which means it's the best distance between them. Still > - * check if this node can be demoted to other target nodes > - * if they have a same best distance. > - */ > - if (best_distance != -1) { > - val = node_distance(node, migration_target); > - if (val > best_distance) > - goto out_clear; > - } > - > - index = nd->nr; > - if (WARN_ONCE(index >= DEMOTION_TARGET_NODES, > - "Exceeds maximum demotion target nodes\n")) > - goto out_clear; > - > - nd->nodes[index] = migration_target; > - nd->nr++; > - > - return migration_target; > -out_clear: > - node_clear(migration_target, *used); > - return NUMA_NO_NODE; > -} > - > -/* > - * When memory fills up on a node, memory contents can be > - * automatically migrated to another node instead of > - * discarded at reclaim. > - * > - * Establish a "migration path" which will start at nodes > - * with CPUs and will follow the priorities used to build the > - * page allocator zonelists. > - * > - * The difference here is that cycles must be avoided. If > - * node0 migrates to node1, then neither node1, nor anything > - * node1 migrates to can migrate to node0. Also one node can > - * be migrated to multiple nodes if the target nodes all have > - * a same best-distance against the source node. > - * > - * This function can run simultaneously with readers of > - * node_demotion[]. However, it can not run simultaneously > - * with itself. Exclusion is provided by memory hotplug events > - * being single-threaded. > - */ > -static void __set_migration_target_nodes(void) > -{ > - nodemask_t next_pass; > - nodemask_t this_pass; > - nodemask_t used_targets = NODE_MASK_NONE; > - int node, best_distance; > - > - /* > - * Avoid any oddities like cycles that could occur > - * from changes in the topology. This will leave > - * a momentary gap when migration is disabled. > - */ > - disable_all_migrate_targets(); > - > - /* > - * Allocations go close to CPUs, first. Assume that > - * the migration path starts at the nodes with CPUs. > - */ > - next_pass = node_states[N_CPU]; > -again: > - this_pass = next_pass; > - next_pass = NODE_MASK_NONE; > - /* > - * To avoid cycles in the migration "graph", ensure > - * that migration sources are not future targets by > - * setting them in 'used_targets'. Do this only > - * once per pass so that multiple source nodes can > - * share a target node. > - * > - * 'used_targets' will become unavailable in future > - * passes. This limits some opportunities for > - * multiple source nodes to share a destination. > - */ > - nodes_or(used_targets, used_targets, this_pass); > - > - for_each_node_mask(node, this_pass) { > - best_distance = -1; > - > - /* > - * Try to set up the migration path for the node, and the target > - * migration nodes can be multiple, so doing a loop to find all > - * the target nodes if they all have a best node distance. > - */ > - do { > - int target_node = > - establish_migrate_target(node, &used_targets, > - best_distance); > - > - if (target_node == NUMA_NO_NODE) > - break; > - > - if (best_distance == -1) > - best_distance = node_distance(node, target_node); > - > - /* > - * Visit targets from this pass in the next pass. > - * Eventually, every node will have been part of > - * a pass, and will become set in 'used_targets'. > - */ > - node_set(target_node, next_pass); > - } while (1); > - } > - /* > - * 'next_pass' contains nodes which became migration > - * targets in this pass. Make additional passes until > - * no more migrations targets are available. > - */ > - if (!nodes_empty(next_pass)) > - goto again; > -} > - > -/* > - * For callers that do not hold get_online_mems() already. > - */ > -void set_migration_target_nodes(void) > -{ > - get_online_mems(); > - __set_migration_target_nodes(); > - put_online_mems(); > -} > - > -/* > - * This leaves migrate-on-reclaim transiently disabled between > - * the MEM_GOING_OFFLINE and MEM_OFFLINE events. This runs > - * whether reclaim-based migration is enabled or not, which > - * ensures that the user can turn reclaim-based migration at > - * any time without needing to recalculate migration targets. > - * > - * These callbacks already hold get_online_mems(). That is why > - * __set_migration_target_nodes() can be used as opposed to > - * set_migration_target_nodes(). > - */ > -#ifdef CONFIG_MEMORY_HOTPLUG > -static int __meminit migrate_on_reclaim_callback(struct notifier_block *self, > - unsigned long action, void *_arg) > -{ > - struct memory_notify *arg = _arg; > - > - /* > - * Only update the node migration order when a node is > - * changing status, like online->offline. This avoids > - * the overhead of synchronize_rcu() in most cases. > - */ > - if (arg->status_change_nid < 0) > - return notifier_from_errno(0); > - > - switch (action) { > - case MEM_GOING_OFFLINE: > - /* > - * Make sure there are not transient states where > - * an offline node is a migration target. This > - * will leave migration disabled until the offline > - * completes and the MEM_OFFLINE case below runs. > - */ > - disable_all_migrate_targets(); > - break; > - case MEM_OFFLINE: > - case MEM_ONLINE: > - /* > - * Recalculate the target nodes once the node > - * reaches its final state (online or offline). > - */ > - __set_migration_target_nodes(); > - break; > - case MEM_CANCEL_OFFLINE: > - /* > - * MEM_GOING_OFFLINE disabled all the migration > - * targets. Reenable them. > - */ > - __set_migration_target_nodes(); > - break; > - case MEM_GOING_ONLINE: > - case MEM_CANCEL_ONLINE: > - break; > - } > - > - return notifier_from_errno(0); > -} > -#endif > - > -void __init migrate_on_reclaim_init(void) > -{ > - node_demotion = kcalloc(nr_node_ids, > - sizeof(struct demotion_nodes), > - GFP_KERNEL); > - WARN_ON(!node_demotion); > -#ifdef CONFIG_MEMORY_HOTPLUG > - hotplug_memory_notifier(migrate_on_reclaim_callback, 100); > -#endif > - /* > - * At this point, all numa nodes with memory/CPus have their state > - * properly set, so we can build the demotion order now. > - * Let us hold the cpu_hotplug lock just, as we could possibily have > - * CPU hotplug events during boot. > - */ > - cpus_read_lock(); > - set_migration_target_nodes(); > - cpus_read_unlock(); > -} > #endif /* CONFIG_NUMA */ > - > - > diff --git a/mm/vmstat.c b/mm/vmstat.c > index 373d2730fcf2..35c6ff97cf29 100644 > --- a/mm/vmstat.c > +++ b/mm/vmstat.c > @@ -28,7 +28,6 @@ > #include <linux/mm_inline.h> > #include <linux/page_ext.h> > #include <linux/page_owner.h> > -#include <linux/migrate.h> > > #include "internal.h" > > @@ -2060,7 +2059,6 @@ static int vmstat_cpu_online(unsigned int cpu) > > if (!node_state(cpu_to_node(cpu), N_CPU)) { > node_set_state(cpu_to_node(cpu), N_CPU); > - set_migration_target_nodes(); > } > > return 0; > @@ -2085,7 +2083,6 @@ static int vmstat_cpu_dead(unsigned int cpu) > return 0; > > node_clear_state(node, N_CPU); > - set_migration_target_nodes(); > > return 0; > } > @@ -2118,7 +2115,6 @@ void __init init_mm_internals(void) > > start_shepherd_timer(); > #endif > - migrate_on_reclaim_init(); > #ifdef CONFIG_PROC_FS > proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op); > proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);