Re: [RFC PATCH 12/26] hugetlb: add HugeTLB splitting functionality

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 




On 24/06/22 11:06 pm, James Houghton wrote:
The new function, hugetlb_split_to_shift, will optimally split the page
table to map a particular address at a particular granularity.

This is useful for punching a hole in the mapping and for mapping small
sections of a HugeTLB page (via UFFDIO_CONTINUE, for example).

Signed-off-by: James Houghton <jthoughton@xxxxxxxxxx>
---
  mm/hugetlb.c | 122 +++++++++++++++++++++++++++++++++++++++++++++++++++
  1 file changed, 122 insertions(+)

diff --git a/mm/hugetlb.c b/mm/hugetlb.c
index 3ec2a921ee6f..eaffe7b4f67c 100644
--- a/mm/hugetlb.c
+++ b/mm/hugetlb.c
@@ -102,6 +102,18 @@ struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
  /* Forward declaration */
  static int hugetlb_acct_memory(struct hstate *h, long delta);
+/*
+ * Find the subpage that corresponds to `addr` in `hpage`.
+ */
+static struct page *hugetlb_find_subpage(struct hstate *h, struct page *hpage,
+				 unsigned long addr)
+{
+	size_t idx = (addr & ~huge_page_mask(h))/PAGE_SIZE;
+
+	BUG_ON(idx >= pages_per_huge_page(h));
+	return &hpage[idx];
+}
+
  static inline bool subpool_is_free(struct hugepage_subpool *spool)
  {
  	if (spool->count)
@@ -7044,6 +7056,116 @@ static unsigned int __shift_for_hstate(struct hstate *h)
  	for ((tmp_h) = hstate; (shift) = __shift_for_hstate(tmp_h), \
  			       (tmp_h) <= &hstates[hugetlb_max_hstate]; \
  			       (tmp_h)++)
+
+/*
+ * Given a particular address, split the HugeTLB PTE that currently maps it
+ * so that, for the given address, the PTE that maps it is `desired_shift`.
+ * This function will always split the HugeTLB PTE optimally.
+ *
+ * For example, given a HugeTLB 1G page that is mapped from VA 0 to 1G. If we
+ * call this function with addr=0 and desired_shift=PAGE_SHIFT, will result in
+ * these changes to the page table:
+ * 1. The PUD will be split into 2M PMDs.
+ * 2. The first PMD will be split again into 4K PTEs.
+ */
+static int hugetlb_split_to_shift(struct mm_struct *mm, struct vm_area_struct *vma,
+			   const struct hugetlb_pte *hpte,
+			   unsigned long addr, unsigned long desired_shift)
+{
+	unsigned long start, end, curr;
+	unsigned long desired_sz = 1UL << desired_shift;
+	struct hstate *h = hstate_vma(vma);
+	int ret;
+	struct hugetlb_pte new_hpte;
+	struct mmu_notifier_range range;
+	struct page *hpage = NULL;
+	struct page *subpage;
+	pte_t old_entry;
+	struct mmu_gather tlb;
+
+	BUG_ON(!hpte->ptep);
+	BUG_ON(hugetlb_pte_size(hpte) == desired_sz);
+
+	start = addr & hugetlb_pte_mask(hpte);
+	end = start + hugetlb_pte_size(hpte);
+
+	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
+
+	BUG_ON(!hpte->ptep);
+	/* This function only works if we are looking at a leaf-level PTE. */
+	BUG_ON(!hugetlb_pte_none(hpte) && !hugetlb_pte_present_leaf(hpte));
+
+	/*
+	 * Clear the PTE so that we will allocate the PT structures when
+	 * walking the page table.
+	 */
+	old_entry = huge_ptep_get_and_clear(mm, start, hpte->ptep);

Sorry missed it last time, what if hgm mapping present here and current hpte is

at higher level. Where we will clear and free child page-table pages.

I see it does not happen in huge_ptep_get_and_clear.

+
+	if (!huge_pte_none(old_entry))
+		hpage = pte_page(old_entry);
+
+	BUG_ON(!IS_ALIGNED(start, desired_sz));
+	BUG_ON(!IS_ALIGNED(end, desired_sz));
+
+	for (curr = start; curr < end;) {
+		struct hstate *tmp_h;
+		unsigned int shift;
+
+		for_each_hgm_shift(h, tmp_h, shift) {
+			unsigned long sz = 1UL << shift;
+
+			if (!IS_ALIGNED(curr, sz) || curr + sz > end)
+				continue;
+			/*
+			 * If we are including `addr`, we need to make sure
+			 * splitting down to the correct size. Go to a smaller
+			 * size if we are not.
+			 */
+			if (curr <= addr && curr + sz > addr &&
+					shift > desired_shift)
+				continue;
+
+			/*
+			 * Continue the page table walk to the level we want,
+			 * allocate PT structures as we go.
+			 */
+			hugetlb_pte_copy(&new_hpte, hpte);
+			ret = hugetlb_walk_to(mm, &new_hpte, curr, sz,
+					      /*stop_at_none=*/false);
+			if (ret)
+				goto err;
+			BUG_ON(hugetlb_pte_size(&new_hpte) != sz);
+			if (hpage) {
+				pte_t new_entry;
+
+				subpage = hugetlb_find_subpage(h, hpage, curr);
+				new_entry = make_huge_pte_with_shift(vma, subpage,
+								     huge_pte_write(old_entry),
+								     shift);
+				set_huge_pte_at(mm, curr, new_hpte.ptep, new_entry);
+			}
+			curr += sz;
+			goto next;
+		}
+		/* We couldn't find a size that worked. */
+		BUG();
+next:
+		continue;
+	}
+
+	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
+				start, end);
+	mmu_notifier_invalidate_range_start(&range);
+	return 0;
+err:
+	tlb_gather_mmu(&tlb, mm);
+	/* Free any newly allocated page table entries. */
+	hugetlb_free_range(&tlb, hpte, start, curr);
+	/* Restore the old entry. */
+	set_huge_pte_at(mm, start, hpte->ptep, old_entry);
+	tlb_finish_mmu(&tlb);
+	return ret;
+}
  #endif /* CONFIG_HUGETLB_HIGH_GRANULARITY_MAPPING */
/*




[Index of Archives]     [Linux ARM Kernel]     [Linux ARM]     [Linux Omap]     [Fedora ARM]     [IETF Annouce]     [Bugtraq]     [Linux OMAP]     [Linux MIPS]     [eCos]     [Asterisk Internet PBX]     [Linux API]

  Powered by Linux