In the current kernel, memory tiers are defined implicitly via a demotion path relationship between NUMA nodes, which is created during the kernel initialization and updated when a NUMA node is hot-added or hot-removed. The current implementation puts all nodes with CPU into the top tier, and builds the tier hierarchy tier-by-tier by establishing the per-node demotion targets based on the distances between nodes. This current memory tier kernel interface needs to be improved for several important use cases, The current tier initialization code always initializes each memory-only NUMA node into a lower tier. But a memory-only NUMA node may have a high performance memory device (e.g. a DRAM device attached via CXL.mem or a DRAM-backed memory-only node on a virtual machine) and should be put into a higher tier. The current tier hierarchy always puts CPU nodes into the top tier. But on a system with HBM or GPU devices, the memory-only NUMA nodes mapping these devices should be in the top tier, and DRAM nodes with CPUs are better to be placed into the next lower tier. With current kernel higher tier node can only be demoted to selected nodes on the next lower tier as defined by the demotion path, not any other node from any lower tier. This strict, hard-coded demotion order does not work in all use cases (e.g. some use cases may want to allow cross-socket demotion to another node in the same demotion tier as a fallback when the preferred demotion node is out of space), This demotion order is also inconsistent with the page allocation fallback order when all the nodes in a higher tier are out of space: The page allocation can fall back to any node from any lower tier, whereas the demotion order doesn't allow that. The current kernel also don't provide any interfaces for the userspace to learn about the memory tier hierarchy in order to optimize its memory allocations. This patch series address the above by defining memory tiers explicitly. This patch introduce explicity memory tiers with ranks. The rank value of a memory tier is used to derive the demotion order between NUMA nodes. The memory tiers present in a system can be found at "Rank" is an opaque value. Its absolute value doesn't have any special meaning. But the rank values of different memtiers can be compared with each other to determine the memory tier order. For example, if we have 3 memtiers: memtier0, memtier1, memiter2, and their rank values are 300, 200, 100, then the memory tier order is: memtier0 -> memtier1 -> memtier2, where memtier0 is the highest tier and memtier2 is the lowest tier. The rank value of each memtier should be unique. A higher rank memory tier will appear first in the demotion order than a lower rank memory tier. ie. while reclaim we choose a node in higher rank memory tier to demote pages to as compared to a node in a lower rank memory tier. This patchset introduce 3 memory tiers (memtier0, memtier1 and memtier2) which are created by different kernel subsystems. The default memory tier created by the kernel is memtier1. Once created these memory tiers are not destroyed even if they don't have any NUMA nodes assigned to them. This patch is based on the proposal sent by Wei Xu <weixugc@xxxxxxxxxx> at [1]. [1] https://lore.kernel.org/linux-mm/CAAPL-u9Wv+nH1VOZTj=9p9S70Y3Qz3+63EkqncRDdHfubsrjfw@xxxxxxxxxxxxxx /sys/devices/system/memtier/memtierN/ The nodes which are part of a specific memory tier can be listed via /sys/devices/system/memtier/memtierN/nodelist Suggested-by: Wei Xu <weixugc@xxxxxxxxxx> Signed-off-by: Jagdish Gediya <jvgediya@xxxxxxxxxxxxx> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@xxxxxxxxxxxxx> --- include/linux/memory-tiers.h | 20 ++++++++ mm/Kconfig | 3 ++ mm/Makefile | 1 + mm/memory-tiers.c | 89 ++++++++++++++++++++++++++++++++++++ 4 files changed, 113 insertions(+) create mode 100644 include/linux/memory-tiers.h create mode 100644 mm/memory-tiers.c diff --git a/include/linux/memory-tiers.h b/include/linux/memory-tiers.h new file mode 100644 index 000000000000..e17f6b4ee177 --- /dev/null +++ b/include/linux/memory-tiers.h @@ -0,0 +1,20 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef _LINUX_MEMORY_TIERS_H +#define _LINUX_MEMORY_TIERS_H + +#ifdef CONFIG_TIERED_MEMORY + +#define MEMORY_TIER_HBM_GPU 0 +#define MEMORY_TIER_DRAM 1 +#define MEMORY_TIER_PMEM 2 + +#define MEMORY_RANK_HBM_GPU 300 +#define MEMORY_RANK_DRAM 200 +#define MEMORY_RANK_PMEM 100 + +#define DEFAULT_MEMORY_TIER MEMORY_TIER_DRAM +#define MAX_MEMORY_TIERS 3 + +#endif /* CONFIG_TIERED_MEMORY */ + +#endif diff --git a/mm/Kconfig b/mm/Kconfig index 169e64192e48..bb5aa585ab41 100644 --- a/mm/Kconfig +++ b/mm/Kconfig @@ -614,6 +614,9 @@ config ARCH_ENABLE_HUGEPAGE_MIGRATION config ARCH_ENABLE_THP_MIGRATION bool +config TIERED_MEMORY + def_bool NUMA + config HUGETLB_PAGE_SIZE_VARIABLE def_bool n help diff --git a/mm/Makefile b/mm/Makefile index 6f9ffa968a1a..482557fbc9d1 100644 --- a/mm/Makefile +++ b/mm/Makefile @@ -92,6 +92,7 @@ obj-$(CONFIG_KFENCE) += kfence/ obj-$(CONFIG_FAILSLAB) += failslab.o obj-$(CONFIG_MEMTEST) += memtest.o obj-$(CONFIG_MIGRATION) += migrate.o +obj-$(CONFIG_TIERED_MEMORY) += memory-tiers.o obj-$(CONFIG_DEVICE_MIGRATION) += migrate_device.o obj-$(CONFIG_TRANSPARENT_HUGEPAGE) += huge_memory.o khugepaged.o obj-$(CONFIG_PAGE_COUNTER) += page_counter.o diff --git a/mm/memory-tiers.c b/mm/memory-tiers.c new file mode 100644 index 000000000000..d9fa955f208e --- /dev/null +++ b/mm/memory-tiers.c @@ -0,0 +1,89 @@ +// SPDX-License-Identifier: GPL-2.0 +#include <linux/types.h> +#include <linux/nodemask.h> +#include <linux/slab.h> +#include <linux/memory-tiers.h> + +struct memory_tier { + struct list_head list; + nodemask_t nodelist; + int id; + int rank; +}; + +static DEFINE_MUTEX(memory_tier_lock); +static LIST_HEAD(memory_tiers); + +/* + * Keep it simple by having direct mapping between + * tier index and rank value. + */ +static inline int get_rank_from_tier(unsigned int tier) +{ + switch (tier) { + case MEMORY_TIER_HBM_GPU: + return MEMORY_RANK_HBM_GPU; + case MEMORY_TIER_DRAM: + return MEMORY_RANK_DRAM; + case MEMORY_TIER_PMEM: + return MEMORY_RANK_PMEM; + } + return -1; +} + +static void insert_memory_tier(struct memory_tier *memtier) +{ + struct list_head *ent; + struct memory_tier *tmp_memtier; + + list_for_each(ent, &memory_tiers) { + tmp_memtier = list_entry(ent, struct memory_tier, list); + if (tmp_memtier->rank < memtier->rank) { + list_add_tail(&memtier->list, ent); + return; + } + } + list_add_tail(&memtier->list, &memory_tiers); +} + +static struct memory_tier *register_memory_tier(unsigned int tier, + unsigned int rank) +{ + struct memory_tier *memtier; + + if (tier >= MAX_MEMORY_TIERS) + return ERR_PTR(-EINVAL); + + memtier = kzalloc(sizeof(struct memory_tier), GFP_KERNEL); + if (!memtier) + return ERR_PTR(-ENOMEM); + + memtier->id = tier; + memtier->rank = rank; + + insert_memory_tier(memtier); + + return memtier; +} + +static int __init memory_tier_init(void) +{ + struct memory_tier *memtier; + + /* + * Register only default memory tier to hide all empty + * memory tier from sysfs. + */ + memtier = register_memory_tier(DEFAULT_MEMORY_TIER, + get_rank_from_tier(DEFAULT_MEMORY_TIER)); + + if (IS_ERR(memtier)) + panic("%s() failed to register memory tier: %ld\n", + __func__, PTR_ERR(memtier)); + + /* CPU only nodes are not part of memory tiers. */ + memtier->nodelist = node_states[N_MEMORY]; + + return 0; +} +subsys_initcall(memory_tier_init); -- 2.36.1