Re: [PATCH RESEND v2 1/2] mm: drop oom code from exit_mmap

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On Tue, 31 May 2022 15:30:59 -0700 Suren Baghdasaryan <surenb@xxxxxxxxxx> wrote:

> The primary reason to invoke the oom reaper from the exit_mmap path used
> to be a prevention of an excessive oom killing if the oom victim exit
> races with the oom reaper (see [1] for more details). The invocation has
> moved around since then because of the interaction with the munlock
> logic but the underlying reason has remained the same (see [2]).
> 
> Munlock code is no longer a problem since [3] and there shouldn't be
> any blocking operation before the memory is unmapped by exit_mmap so
> the oom reaper invocation can be dropped. The unmapping part can be done
> with the non-exclusive mmap_sem and the exclusive one is only required
> when page tables are freed.
> 
> Remove the oom_reaper from exit_mmap which will make the code easier to
> read. This is really unlikely to make any observable difference although
> some microbenchmarks could benefit from one less branch that needs to be
> evaluated even though it almost never is true.
> 
> [1] 212925802454 ("mm: oom: let oom_reap_task and exit_mmap run concurrently")
> [2] 27ae357fa82b ("mm, oom: fix concurrent munlock and oom reaper unmap, v3")
> [3] a213e5cf71cb ("mm/munlock: delete munlock_vma_pages_all(), allow oomreap")
> 

I've just reinstated the mapletree patchset so there are some
conflicting changes.

> --- a/include/linux/oom.h
> +++ b/include/linux/oom.h
> @@ -106,8 +106,6 @@ static inline vm_fault_t check_stable_address_space(struct mm_struct *mm)
>  	return 0;
>  }
>  
> -bool __oom_reap_task_mm(struct mm_struct *mm);
> -
>  long oom_badness(struct task_struct *p,
>  		unsigned long totalpages);
>  
> diff --git a/mm/mmap.c b/mm/mmap.c
> index 2b9305ed0dda..b7918e6bb0db 100644
> --- a/mm/mmap.c
> +++ b/mm/mmap.c
> @@ -3110,30 +3110,13 @@ void exit_mmap(struct mm_struct *mm)
>  	/* mm's last user has gone, and its about to be pulled down */
>  	mmu_notifier_release(mm);
>  
> -	if (unlikely(mm_is_oom_victim(mm))) {
> -		/*
> -		 * Manually reap the mm to free as much memory as possible.
> -		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
> -		 * this mm from further consideration.  Taking mm->mmap_lock for
> -		 * write after setting MMF_OOM_SKIP will guarantee that the oom
> -		 * reaper will not run on this mm again after mmap_lock is
> -		 * dropped.
> -		 *
> -		 * Nothing can be holding mm->mmap_lock here and the above call
> -		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
> -		 * __oom_reap_task_mm() will not block.
> -		 */
> -		(void)__oom_reap_task_mm(mm);
> -		set_bit(MMF_OOM_SKIP, &mm->flags);
> -	}
> -
> -	mmap_write_lock(mm);
> +	mmap_read_lock(mm);

Unclear why this patch fiddles with the mm_struct locking in this
fashion - changelogging that would have been helpful.

But iirc mapletree wants to retain a write_lock here, so I ended up with

void exit_mmap(struct mm_struct *mm)
{
	struct mmu_gather tlb;
	struct vm_area_struct *vma;
	unsigned long nr_accounted = 0;
	MA_STATE(mas, &mm->mm_mt, 0, 0);
	int count = 0;

	/* mm's last user has gone, and its about to be pulled down */
	mmu_notifier_release(mm);

	mmap_write_lock(mm);
	arch_exit_mmap(mm);

	vma = mas_find(&mas, ULONG_MAX);
	if (!vma) {
		/* Can happen if dup_mmap() received an OOM */
		mmap_write_unlock(mm);
		return;
	}

	lru_add_drain();
	flush_cache_mm(mm);
	tlb_gather_mmu_fullmm(&tlb, mm);
	/* update_hiwater_rss(mm) here? but nobody should be looking */
	/* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
	unmap_vmas(&tlb, &mm->mm_mt, vma, 0, ULONG_MAX);

	/*
	 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
	 * because the memory has been already freed. Do not bother checking
	 * mm_is_oom_victim because setting a bit unconditionally is cheaper.
	 */
	set_bit(MMF_OOM_SKIP, &mm->flags);
	free_pgtables(&tlb, &mm->mm_mt, vma, FIRST_USER_ADDRESS,
		      USER_PGTABLES_CEILING);
	tlb_finish_mmu(&tlb);

	/*
	 * Walk the list again, actually closing and freeing it, with preemption
	 * enabled, without holding any MM locks besides the unreachable
	 * mmap_write_lock.
	 */
	do {
		if (vma->vm_flags & VM_ACCOUNT)
			nr_accounted += vma_pages(vma);
		remove_vma(vma);
		count++;
		cond_resched();
	} while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);

	BUG_ON(count != mm->map_count);

	trace_exit_mmap(mm);
	__mt_destroy(&mm->mm_mt);
	mm->mmap = NULL;
	mmap_write_unlock(mm);
	vm_unacct_memory(nr_accounted);
}





[Index of Archives]     [Linux ARM Kernel]     [Linux ARM]     [Linux Omap]     [Fedora ARM]     [IETF Annouce]     [Bugtraq]     [Linux OMAP]     [Linux MIPS]     [eCos]     [Asterisk Internet PBX]     [Linux API]

  Powered by Linux