Re: RFC: Memory Tiering Kernel Interfaces (v3)

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On Thu, 2022-05-26 at 14:22 -0700, Wei Xu wrote:
> Changes since v2
> ================
> * Updated the design and examples to use "rank" instead of device ID
>   to determine the order between memory tiers for better flexibility.
> 
> Overview
> ========
> 
> The current kernel has the basic memory tiering support: Inactive
> pages on a higher tier NUMA node can be migrated (demoted) to a lower
> tier NUMA node to make room for new allocations on the higher tier
> NUMA node.  Frequently accessed pages on a lower tier NUMA node can be
> migrated (promoted) to a higher tier NUMA node to improve the
> performance.
> 
> In the current kernel, memory tiers are defined implicitly via a
> demotion path relationship between NUMA nodes, which is created during
> the kernel initialization and updated when a NUMA node is hot-added or
> hot-removed.  The current implementation puts all nodes with CPU into
> the top tier, and builds the tier hierarchy tier-by-tier by
> establishing the per-node demotion targets based on the distances
> between nodes.
> 
> This current memory tier kernel interface needs to be improved for
> several important use cases:
> 
> * The current tier initialization code always initializes
>   each memory-only NUMA node into a lower tier.  But a memory-only
>   NUMA node may have a high performance memory device (e.g. a DRAM
>   device attached via CXL.mem or a DRAM-backed memory-only node on
>   a virtual machine) and should be put into a higher tier.
> 
> * The current tier hierarchy always puts CPU nodes into the top
>   tier. But on a system with HBM (e.g. GPU memory) devices, these
>   memory-only HBM NUMA nodes should be in the top tier, and DRAM nodes
>   with CPUs are better to be placed into the next lower tier.
> 
> * Also because the current tier hierarchy always puts CPU nodes
>   into the top tier, when a CPU is hot-added (or hot-removed) and
>   triggers a memory node from CPU-less into a CPU node (or vice
>   versa), the memory tier hierarchy gets changed, even though no
>   memory node is added or removed.  This can make the tier
>   hierarchy unstable and make it difficult to support tier-based
>   memory accounting.
> 
> * A higher tier node can only be demoted to selected nodes on the
>   next lower tier as defined by the demotion path, not any other
>   node from any lower tier.  This strict, hard-coded demotion order
>   does not work in all use cases (e.g. some use cases may want to
>   allow cross-socket demotion to another node in the same demotion
>   tier as a fallback when the preferred demotion node is out of
>   space), and has resulted in the feature request for an interface to
>   override the system-wide, per-node demotion order from the
>   userspace.  This demotion order is also inconsistent with the page
>   allocation fallback order when all the nodes in a higher tier are
>   out of space: The page allocation can fall back to any node from
>   any lower tier, whereas the demotion order doesn't allow that.
> 
> * There are no interfaces for the userspace to learn about the memory
>   tier hierarchy in order to optimize its memory allocations.
> 
> I'd like to propose revised memory tier kernel interfaces based on
> the discussions in the threads:
> 
> - https://lore.kernel.org/lkml/20220425201728.5kzm4seu7rep7ndr@offworld/T/
> - https://lore.kernel.org/linux-mm/20220426114300.00003ad8@xxxxxxxxxx/t/
> - https://lore.kernel.org/linux-mm/867bc216386eb6cbf54648f23e5825830f5b922e.camel@xxxxxxxxx/T/
> - https://lore.kernel.org/linux-mm/d6314cfe1c7898a6680bed1e7cc93b0ab93e3155.camel@xxxxxxxxx/T/
> 
> 
> High-level Design Ideas
> =======================
> 
> * Define memory tiers explicitly, not implicitly.
> 
> * Memory tiers are defined based on hardware capabilities of memory
>   nodes, not their relative node distances between each other.
> 
> * The tier assignment of each node is independent from each other.
>   Moving a node from one tier to another tier doesn't affect the tier
>   assignment of any other node.
> 
> * The node-tier association is stable. A node can be reassigned to a
>   different tier only under the specific conditions that don't block
>   future tier-based memory cgroup accounting.
> 
> * A node can demote its pages to any nodes of any lower tiers. The
>   demotion target node selection follows the allocation fallback order
>   of the source node, which is built based on node distances.  The
>   demotion targets are also restricted to only the nodes from the tiers
>   lower than the source node.  We no longer need to maintain a separate
>   per-node demotion order (node_demotion[]).
> 
> 
> Sysfs Interfaces
> ================
> 
> * /sys/devices/system/memtier/
> 
>   This is the directory containing the information about memory tiers.
> 
>   Each memory tier has its own subdirectory.
> 
>   The order of memory tiers is determined by their rank values, not by
>   their memtier device names.
> 
>   - /sys/devices/system/memtier/possible
> 
>     Format: ordered list of "memtier(rank)"
>     Example: 0(64), 1(128), 2(192)
> 
>     Read-only.  When read, list all available memory tiers and their
>     associated ranks, ordered by the rank values (from the highest
>      tier to the lowest tier).

I like the idea of "possible" file.  And I think we can show default
tier too.  That is, if "1(128)" is the default tier (tier with DRAM),
then the list can be,

"
0/64 [1/128] 2/192
"

To make it more easier to be parsed by shell, I will prefer something
like,

"
0	64
1	128	default
2	192
"

But one line format is OK for me too.

> 
> * /sys/devices/system/memtier/memtierN/
> 
>   This is the directory containing the information about a particular
>   memory tier, memtierN, where N is the memtier device ID (e.g. 0, 1).
> 
>   The memtier device ID number itself is just an identifier and has no
>   special meaning, i.e. memtier device ID numbers do not determine the
>   order of memory tiers.
> 
>   - /sys/devices/system/memtier/memtierN/rank
> 
>     Format: int
>     Example: 100
> 
>     Read-only.  When read, list the "rank" value associated with memtierN.
> 
>     "Rank" is an opaque value. Its absolute value doesn't have any
>     special meaning. But the rank values of different memtiers can be
>     compared with each other to determine the memory tier order.
>     For example, if we have 3 memtiers: memtier0, memtier1, memiter2, and
>     their rank values are 10, 20, 15, then the memory tier order is:
>     memtier0 -> memtier2 -> memtier1, where memtier0 is the highest tier
>     and memtier1 is the lowest tier.
> 
>     The rank value of each memtier should be unique.
> 
>   - /sys/devices/system/memtier/memtierN/nodelist
> 
>     Format: node_list
>     Example: 1-2
> 
>     Read-only.  When read, list the memory nodes in the specified tier.
> 
>     If a memory tier has no memory nodes, the kernel can hide the sysfs
>     directory of this memory tier, though the tier itself can still be
>     visible from /sys/devices/system/memtier/possible.
> 
> * /sys/devices/system/node/nodeN/memtier
> 
>   where N = 0, 1, ...
> 
>   Format: int or empty
>   Example: 1
> 
>   When read, list the device ID of the memory tier that the node belongs
>   to.  Its value is empty for a CPU-only NUMA node.
> 
>   When written, the kernel moves the node into the specified memory
>   tier if the move is allowed.  The tier assignment of all other nodes
>   are not affected.
> 
>   Initially, we can make this interface read-only.
> 
> 
> Kernel Representation
> =====================
> 
> * All memory tiering code is guarded by CONFIG_TIERED_MEMORY.
> 
> * #define MAX_MEMORY_TIERS  3
> 
>   Support 3 memory tiers for now.  This can be a kconfig option.
> 
> * #define MEMORY_DEFAULT_TIER_DEVICE 1
> 
>   The default tier device that a memory node is assigned to.
> 
> * struct memtier_dev {
>       nodemask_t nodelist;
>       int rank;
>       int tier;
>   } memtier_devices[MAX_MEMORY_TIERS]
> 
>   Store memory tiers by device IDs.
> 
> * struct memtier_dev *memory_tier(int tier)
> 
>   Returns the memtier device for a given memory tier.
> 
> * int node_tier_dev_map[MAX_NUMNODES]
> 
>   Map a node to its tier device ID..
> 
>   For each CPU-only node c, node_tier_dev_map[c] = -1.
> 
> 
> Memory Tier Initialization
> ==========================
> 
> By default, all memory nodes are assigned to the default tier
> (MEMORY_DEFAULT_TIER_DEVICE).  The default tier device has a rank value
> in the middle of the possible rank value range (e.g. 127 if the range
> is [0..255]).
> 
> A device driver can move up or down its memory nodes from the default
> tier.  For example, PMEM can move down its memory nodes below the
> default tier, whereas GPU can move up its memory nodes above the
> default tier.
> 
> The kernel initialization code makes the decision on which exact tier
> a memory node should be assigned to based on the requests from the
> device drivers as well as the memory device hardware information
> provided by the firmware.
> 
> 
> Memory Tier Reassignment
> ========================
> 
> After a memory node is hot-removed, it can be hot-added back to a
> different memory tier.  This is useful for supporting dynamically
> provisioned CXL.mem NUMA nodes, which may connect to different
> memory devices across hot-plug events.  Such tier changes should
> be compatible with tier-based memory accounting.
> 
> The userspace may also reassign an existing online memory node to a
> different tier.  However, this should only be allowed when no pages
> are allocated from the memory node or when there are no non-root
> memory cgroups (e.g. during the system boot).  This restriction is
> important for keeping memory tier hierarchy stable enough for
> tier-based memory cgroup accounting.

One way to do this is hot-remove all memory of a node, change its
memtier, then hot-add its memory.

Best Regards,
Huang, Ying

> Hot-adding/removing CPUs doesn't affect memory tier hierarchy.
> 
> 
> Memory Allocation for Demotion
> ==============================
> 
> To allocate a new page as the demotion target for a page, the kernel
> calls the allocation function (__alloc_pages_nodemask) with the
> source page node as the preferred node and the union of all lower
> tier nodes as the allowed nodemask.  The actual target node selection
> then follows the allocation fallback order that the kernel has
> already defined.
> 
> The pseudo code looks like:
> 
>     targets = NODE_MASK_NONE;
>     src_nid = page_to_nid(page);
>     src_tier = memtier_devices[node_tier_dev_map[src_nid]].tier;
>     for (i = src_tier + 1; i < MAX_MEMORY_TIERS; i++)
>             nodes_or(targets, targets, memory_tier(i)->nodelist);
>     new_page = __alloc_pages_nodemask(gfp, order, src_nid, targets);
> 
> The memopolicy of cpuset, vma and owner task of the source page can
> be set to refine the demotion target nodemask, e.g. to prevent
> demotion or select a particular allowed node as the demotion target.
> 
> 
> Memory Allocation for Promotion
> ===============================
> 
> The page allocation for promotion is similar to demotion, except that (1)
> the target nodemask uses the promotion tiers, (2) the preferred node can
> be the accessing CPU node, not the source page node.
> 
> 
> Examples
> ========
> 
> * Example 1:
> 
> Node 0 & 1 are DRAM nodes, node 2 & 3 are PMEM nodes.
> 
>                   20
>   Node 0 (DRAM)  ----  Node 1 (DRAM)
>        |        \   /       |
>        | 30    40 X 40      | 30
>        |        /   \       |
>   Node 2 (PMEM)  ----  Node 3 (PMEM)
>                   40
> 
> node distances:
> node   0    1    2    3
>    0  10   20   30   40
>    1  20   10   40   30
>    2  30   40   10   40
>    3  40   30   40   10
> 
> $ cat /sys/devices/system/memtier/possible
> 0(64), 1(128), 2(192)
> 
> $ grep '' /sys/devices/system/memtier/memtier*/rank
> /sys/devices/system/memtier/memtier1/rank:128
> /sys/devices/system/memtier/memtier2/rank:192
> 
> $ grep '' /sys/devices/system/memtier/memtier*/nodelist
> /sys/devices/system/memtier/memtier1/nodelist:0-1
> /sys/devices/system/memtier/memtier2/nodelist:2-3
> 
> $ grep '' /sys/devices/system/node/node*/memtier
> /sys/devices/system/node/node0/memtier:1
> /sys/devices/system/node/node1/memtier:1
> /sys/devices/system/node/node2/memtier:2
> /sys/devices/system/node/node3/memtier:2
> 
> Demotion fallback order:
> node 0: 2, 3
> node 1: 3, 2
> node 2: empty
> node 3: empty
> 
> To prevent cross-socket demotion and memory access, the user can set
> mempolicy, e.g. cpuset.mems=0,2.
> 
> 
> * Example 2:
> 
> Node 0 & 1 are DRAM nodes.
> Node 2 is a PMEM node and closer to node 0.
> 
>                   20
>   Node 0 (DRAM)  ----  Node 1 (DRAM)
>        |            /
>        | 30       / 40
>        |        /
>   Node 2 (PMEM)
> 
> node distances:
> node   0    1    2
>    0  10   20   30
>    1  20   10   40
>    2  30   40   10
> 
> $ cat /sys/devices/system/memtier/possible
> 0(64), 1(128), 2(192)
> 
> $ grep '' /sys/devices/system/memtier/memtier*/rank
> /sys/devices/system/memtier/memtier1/rank:128
> /sys/devices/system/memtier/memtier2/rank:192
> 
> $ grep '' /sys/devices/system/memtier/memtier*/nodelist
> /sys/devices/system/memtier/memtier1/nodelist:0-1
> /sys/devices/system/memtier/memtier2/nodelist:2
> 
> $ grep '' /sys/devices/system/node/node*/memtier
> /sys/devices/system/node/node0/memtier:1
> /sys/devices/system/node/node1/memtier:1
> /sys/devices/system/node/node2/memtier:2
> 
> Demotion fallback order:
> node 0: 2
> node 1: 2
> node 2: empty
> 
> 
> * Example 3:
> 
> Node 0 & 1 are DRAM nodes, Node 2 is a memory-only DRAM node.
> 
> All nodes are in the same tier.
> 
>                   20
>   Node 0 (DRAM)  ----  Node 1 (DRAM)
>          \                 /
>           \ 30            / 30
>            \             /
>              Node 2 (PMEM)
> 
> node distances:
> node   0    1    2
>    0  10   20   30
>    1  20   10   30
>    2  30   30   10
> 
> $ cat /sys/devices/system/memtier/possible
> 0(64), 1(128), 2(192)
> 
> $ grep '' /sys/devices/system/memtier/memtier*/rank
> /sys/devices/system/memtier/memtier1/rank:128
> 
> $ grep '' /sys/devices/system/memtier/memtier*/nodelist
> /sys/devices/system/memtier/memtier1/nodelist:0-2
> 
> $ grep '' /sys/devices/system/node/node*/memtier
> /sys/devices/system/node/node0/memtier:1
> /sys/devices/system/node/node1/memtier:1
> /sys/devices/system/node/node2/memtier:1
> 
> Demotion fallback order:
> node 0: empty
> node 1: empty
> node 2: empty
> 
> 
> * Example 4:
> 
> Node 0 is a DRAM node with CPU.
> Node 1 is a PMEM node.
> Node 2 is a GPU node.
> 
>                   50
>   Node 0 (DRAM)  ----  Node 2 (GPU)
>          \                 /
>           \ 30            / 60
>            \             /
>              Node 1 (PMEM)
> 
> node distances:
> node   0    1    2
>    0  10   30   50
>    1  30   10   60
>    2  50   60   10
> 
> $ cat /sys/devices/system/memtier/possible
> 0(64), 1(128), 2(192)
> 
> $ grep '' /sys/devices/system/memtier/memtier*/rank
> /sys/devices/system/memtier/memtier0/rank:64
> /sys/devices/system/memtier/memtier1/rank:128
> /sys/devices/system/memtier/memtier2/rank:192
> 
> $ grep '' /sys/devices/system/memtier/memtier*/nodelist
> /sys/devices/system/memtier/memtier0/nodelist:2
> /sys/devices/system/memtier/memtier1/nodelist:0
> /sys/devices/system/memtier/memtier2/nodelist:1
> 
> $ grep '' /sys/devices/system/node/node*/memtier
> /sys/devices/system/node/node0/memtier:1
> /sys/devices/system/node/node1/memtier:2
> /sys/devices/system/node/node2/memtier:0
> 
> Demotion fallback order:
> node 0: 1
> node 1: empty
> node 2: 0, 1
> 
> 
> * Example 5:
> 
> Node 0 is a DRAM node with CPU.
> Node 1 is a GPU node.
> Node 2 is a PMEM node.
> Node 3 is a large, slow DRAM node without CPU.
> 
>                     100
>      Node 0 (DRAM)  ----  Node 1 (GPU)
>     /     |               /    |
>    /40    |30        120 /     | 110
>   |       |             /      |
>   |  Node 2 (PMEM) ----       /
>   |        \                 /
>    \     80 \               /
>     ------- Node 3 (Slow DRAM)
> 
> node distances:
> node    0    1    2    3
>    0   10  100   30   40
>    1  100   10  120  110
>    2   30  120   10   80
>    3   40  110   80   10
> 
> MAX_MEMORY_TIERS=4 (memtier3 is a memory tier added later).
> 
> $ cat /sys/devices/system/memtier/possible
> 0(64), 1(128), 3(160), 2(192)
> 
> $ grep '' /sys/devices/system/memtier/memtier*/rank
> /sys/devices/system/memtier/memtier0/rank:64
> /sys/devices/system/memtier/memtier1/rank:128
> /sys/devices/system/memtier/memtier2/rank:192
> /sys/devices/system/memtier/memtier3/rank:160
> 
> $ grep '' /sys/devices/system/memtier/memtier*/nodelist
> /sys/devices/system/memtier/memtier0/nodelist:1
> /sys/devices/system/memtier/memtier1/nodelist:0
> /sys/devices/system/memtier/memtier2/nodelist:2
> /sys/devices/system/memtier/memtier3/nodelist:3
> 
> $ grep '' /sys/devices/system/node/node*/memtier
> /sys/devices/system/node/node0/memtier:1
> /sys/devices/system/node/node1/memtier:0
> /sys/devices/system/node/node2/memtier:2
> /sys/devices/system/node/node3/memtier:3
> 
> Demotion fallback order:
> node 0: 2, 3
> node 1: 0, 3, 2
> node 2: empty
> node 3: 2






[Index of Archives]     [Linux ARM Kernel]     [Linux ARM]     [Linux Omap]     [Fedora ARM]     [IETF Annouce]     [Bugtraq]     [Linux OMAP]     [Linux MIPS]     [eCos]     [Asterisk Internet PBX]     [Linux API]

  Powered by Linux