From: Andrey Konovalov <andreyknvl@xxxxxxxxxx> Currently, should_skip_kasan_poison() has two definitions: one for when CONFIG_DEFERRED_STRUCT_PAGE_INIT is enabled, one for when it's not. Instead of duplicating the checks, add a deferred_pages_enabled() helper and use it in a single should_skip_kasan_poison() definition. Also move should_skip_kasan_poison() closer to its caller and clarify all conditions in the comment. Signed-off-by: Andrey Konovalov <andreyknvl@xxxxxxxxxx> --- Changes v2->v3: - Update patch description. --- mm/page_alloc.c | 55 +++++++++++++++++++++++++++++-------------------- 1 file changed, 33 insertions(+), 22 deletions(-) diff --git a/mm/page_alloc.c b/mm/page_alloc.c index edfd6c81af82..f0bcecac19cd 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c @@ -377,25 +377,9 @@ int page_group_by_mobility_disabled __read_mostly; */ static DEFINE_STATIC_KEY_TRUE(deferred_pages); -/* - * Calling kasan_poison_pages() only after deferred memory initialization - * has completed. Poisoning pages during deferred memory init will greatly - * lengthen the process and cause problem in large memory systems as the - * deferred pages initialization is done with interrupt disabled. - * - * Assuming that there will be no reference to those newly initialized - * pages before they are ever allocated, this should have no effect on - * KASAN memory tracking as the poison will be properly inserted at page - * allocation time. The only corner case is when pages are allocated by - * on-demand allocation and then freed again before the deferred pages - * initialization is done, but this is not likely to happen. - */ -static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) +static inline bool deferred_pages_enabled(void) { - return static_branch_unlikely(&deferred_pages) || - (!IS_ENABLED(CONFIG_KASAN_GENERIC) && - (fpi_flags & FPI_SKIP_KASAN_POISON)) || - PageSkipKASanPoison(page); + return static_branch_unlikely(&deferred_pages); } /* Returns true if the struct page for the pfn is uninitialised */ @@ -446,11 +430,9 @@ defer_init(int nid, unsigned long pfn, unsigned long end_pfn) return false; } #else -static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) +static inline bool deferred_pages_enabled(void) { - return (!IS_ENABLED(CONFIG_KASAN_GENERIC) && - (fpi_flags & FPI_SKIP_KASAN_POISON)) || - PageSkipKASanPoison(page); + return false; } static inline bool early_page_uninitialised(unsigned long pfn) @@ -1270,6 +1252,35 @@ static int free_tail_pages_check(struct page *head_page, struct page *page) return ret; } +/* + * Skip KASAN memory poisoning when either: + * + * 1. Deferred memory initialization has not yet completed, + * see the explanation below. + * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON, + * see the comment next to it. + * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON, + * see the comment next to it. + * + * Poisoning pages during deferred memory init will greatly lengthen the + * process and cause problem in large memory systems as the deferred pages + * initialization is done with interrupt disabled. + * + * Assuming that there will be no reference to those newly initialized + * pages before they are ever allocated, this should have no effect on + * KASAN memory tracking as the poison will be properly inserted at page + * allocation time. The only corner case is when pages are allocated by + * on-demand allocation and then freed again before the deferred pages + * initialization is done, but this is not likely to happen. + */ +static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) +{ + return deferred_pages_enabled() || + (!IS_ENABLED(CONFIG_KASAN_GENERIC) && + (fpi_flags & FPI_SKIP_KASAN_POISON)) || + PageSkipKASanPoison(page); +} + static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags) { int i; -- 2.25.1