Update comments mentioning pages to mention slabs where appropriate. Also some goto labels. Signed-off-by: Vlastimil Babka <vbabka@xxxxxxx> --- include/linux/slub_def.h | 2 +- mm/slub.c | 105 +++++++++++++++++++-------------------- 2 files changed, 53 insertions(+), 54 deletions(-) diff --git a/include/linux/slub_def.h b/include/linux/slub_def.h index 00d99afe1c0e..8a9c2876ca89 100644 --- a/include/linux/slub_def.h +++ b/include/linux/slub_def.h @@ -99,7 +99,7 @@ struct kmem_cache { #ifdef CONFIG_SLUB_CPU_PARTIAL /* Number of per cpu partial objects to keep around */ unsigned int cpu_partial; - /* Number of per cpu partial pages to keep around */ + /* Number of per cpu partial slabs to keep around */ unsigned int cpu_partial_slabs; #endif struct kmem_cache_order_objects oo; diff --git a/mm/slub.c b/mm/slub.c index be46a7151e8c..f5344211d8cc 100644 --- a/mm/slub.c +++ b/mm/slub.c @@ -48,7 +48,7 @@ * 1. slab_mutex (Global Mutex) * 2. node->list_lock (Spinlock) * 3. kmem_cache->cpu_slab->lock (Local lock) - * 4. slab_lock(page) (Only on some arches or for debugging) + * 4. slab_lock(slab) (Only on some arches or for debugging) * 5. object_map_lock (Only for debugging) * * slab_mutex @@ -64,19 +64,19 @@ * * The slab_lock is only used for debugging and on arches that do not * have the ability to do a cmpxchg_double. It only protects: - * A. page->freelist -> List of object free in a page - * B. page->inuse -> Number of objects in use - * C. page->objects -> Number of objects in page - * D. page->frozen -> frozen state + * A. slab->freelist -> List of free objects in a slab + * B. slab->inuse -> Number of objects in use + * C. slab->objects -> Number of objects in slab + * D. slab->frozen -> frozen state * * Frozen slabs * * If a slab is frozen then it is exempt from list management. It is not * on any list except per cpu partial list. The processor that froze the - * slab is the one who can perform list operations on the page. Other + * slab is the one who can perform list operations on the slab. Other * processors may put objects onto the freelist but the processor that * froze the slab is the only one that can retrieve the objects from the - * page's freelist. + * slab's freelist. * * list_lock * @@ -135,7 +135,7 @@ * minimal so we rely on the page allocators per cpu caches for * fast frees and allocs. * - * page->frozen The slab is frozen and exempt from list processing. + * slab->frozen The slab is frozen and exempt from list processing. * This means that the slab is dedicated to a purpose * such as satisfying allocations for a specific * processor. Objects may be freed in the slab while @@ -250,7 +250,7 @@ static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) #define OO_SHIFT 16 #define OO_MASK ((1 << OO_SHIFT) - 1) -#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ +#define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ /* Internal SLUB flags */ /* Poison object */ @@ -423,8 +423,8 @@ static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) /* * We take the number of objects but actually limit the number of - * pages on the per cpu partial list, in order to limit excessive - * growth of the list. For simplicity we assume that the pages will + * slabs on the per cpu partial list, in order to limit excessive + * growth of the list. For simplicity we assume that the slabs will * be half-full. */ nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); @@ -594,9 +594,9 @@ static inline bool slab_add_kunit_errors(void) { return false; } #endif /* - * Determine a map of object in use on a page. + * Determine a map of objects in use in a slab. * - * Node listlock must be held to guarantee that the page does + * Node listlock must be held to guarantee that the slab does * not vanish from under us. */ static unsigned long *get_map(struct kmem_cache *s, struct slab *slab) @@ -1139,7 +1139,7 @@ static int check_slab(struct kmem_cache *s, struct slab *slab) } /* - * Determine if a certain object on a page is on the freelist. Must hold the + * Determine if a certain object in a slab is on the freelist. Must hold the * slab lock to guarantee that the chains are in a consistent state. */ static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search) @@ -2185,7 +2185,7 @@ static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, } /* - * Get a page from somewhere. Search in increasing NUMA distances. + * Get a slab from somewhere. Search in increasing NUMA distances. */ static void *get_any_partial(struct kmem_cache *s, gfp_t flags, struct slab **ret_slab) @@ -2249,7 +2249,7 @@ static void *get_any_partial(struct kmem_cache *s, gfp_t flags, } /* - * Get a partial page, lock it and return it. + * Get a partial slab, lock it and return it. */ static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, struct slab **ret_slab) @@ -2341,7 +2341,7 @@ static void init_kmem_cache_cpus(struct kmem_cache *s) } /* - * Finishes removing the cpu slab. Merges cpu's freelist with page's freelist, + * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, * unfreezes the slabs and puts it on the proper list. * Assumes the slab has been already safely taken away from kmem_cache_cpu * by the caller. @@ -2388,18 +2388,18 @@ static void deactivate_slab(struct kmem_cache *s, struct slab *slab, } /* - * Stage two: Unfreeze the page while splicing the per-cpu - * freelist to the head of page's freelist. + * Stage two: Unfreeze the slab while splicing the per-cpu + * freelist to the head of slab's freelist. * - * Ensure that the page is unfrozen while the list presence + * Ensure that the slab is unfrozen while the list presence * reflects the actual number of objects during unfreeze. * * We setup the list membership and then perform a cmpxchg - * with the count. If there is a mismatch then the page - * is not unfrozen but the page is on the wrong list. + * with the count. If there is a mismatch then the slab + * is not unfrozen but the slab is on the wrong list. * * Then we restart the process which may have to remove - * the page from the list that we just put it on again + * the slab from the list that we just put it on again * because the number of objects in the slab may have * changed. */ @@ -2427,9 +2427,8 @@ static void deactivate_slab(struct kmem_cache *s, struct slab *slab, if (!lock) { lock = 1; /* - * Taking the spinlock removes the possibility - * that acquire_slab() will see a slab page that - * is frozen + * Taking the spinlock removes the possibility that + * acquire_slab() will see a slab that is frozen */ spin_lock_irqsave(&n->list_lock, flags); } @@ -2570,8 +2569,8 @@ static void unfreeze_partials_cpu(struct kmem_cache *s, } /* - * Put a page that was just frozen (in __slab_free|get_partial_node) into a - * partial page slot if available. + * Put a slab that was just frozen (in __slab_free|get_partial_node) into a + * partial slab slot if available. * * If we did not find a slot then simply move all the partials to the * per node partial list. @@ -2842,12 +2841,12 @@ static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) } /* - * Check the page->freelist of a page and either transfer the freelist to the - * per cpu freelist or deactivate the page. + * Check the slab->freelist and either transfer the freelist to the + * per cpu freelist or deactivate the slab. * - * The page is still frozen if the return value is not NULL. + * The slab is still frozen if the return value is not NULL. * - * If this function returns NULL then the page has been unfrozen. + * If this function returns NULL then the slab has been unfrozen. */ static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) { @@ -2903,7 +2902,7 @@ static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, stat(s, ALLOC_SLOWPATH); -reread_page: +reread_slab: slab = READ_ONCE(c->slab); if (!slab) { @@ -2940,11 +2939,11 @@ static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, if (unlikely(!pfmemalloc_match(slab, gfpflags))) goto deactivate_slab; - /* must check again c->page in case we got preempted and it changed */ + /* must check again c->slab in case we got preempted and it changed */ local_lock_irqsave(&s->cpu_slab->lock, flags); if (unlikely(slab != c->slab)) { local_unlock_irqrestore(&s->cpu_slab->lock, flags); - goto reread_page; + goto reread_slab; } freelist = c->freelist; if (freelist) @@ -2967,8 +2966,8 @@ static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, /* * freelist is pointing to the list of objects to be used. - * page is pointing to the page from which the objects are obtained. - * That page must be frozen for per cpu allocations to work. + * slab is pointing to the slab from which the objects are obtained. + * That slab must be frozen for per cpu allocations to work. */ VM_BUG_ON(!c->slab->frozen); c->freelist = get_freepointer(s, freelist); @@ -2981,7 +2980,7 @@ static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, local_lock_irqsave(&s->cpu_slab->lock, flags); if (slab != c->slab) { local_unlock_irqrestore(&s->cpu_slab->lock, flags); - goto reread_page; + goto reread_slab; } freelist = c->freelist; c->slab = NULL; @@ -2995,7 +2994,7 @@ static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, local_lock_irqsave(&s->cpu_slab->lock, flags); if (unlikely(c->slab)) { local_unlock_irqrestore(&s->cpu_slab->lock, flags); - goto reread_page; + goto reread_slab; } if (unlikely(!slub_percpu_partial(c))) { local_unlock_irqrestore(&s->cpu_slab->lock, flags); @@ -3014,7 +3013,7 @@ static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, freelist = get_partial(s, gfpflags, node, &slab); if (freelist) - goto check_new_page; + goto check_new_slab; slub_put_cpu_ptr(s->cpu_slab); slab = new_slab(s, gfpflags, node); @@ -3026,7 +3025,7 @@ static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, } /* - * No other reference to the page yet so we can + * No other reference to the slab yet so we can * muck around with it freely without cmpxchg */ freelist = slab->freelist; @@ -3034,7 +3033,7 @@ static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, stat(s, ALLOC_SLAB); -check_new_page: +check_new_slab: if (kmem_cache_debug(s)) { if (!alloc_debug_processing(s, slab, freelist, addr)) { @@ -3056,7 +3055,7 @@ static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, */ goto return_single; -retry_load_page: +retry_load_slab: local_lock_irqsave(&s->cpu_slab->lock, flags); if (unlikely(c->slab)) { @@ -3073,7 +3072,7 @@ static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, stat(s, CPUSLAB_FLUSH); - goto retry_load_page; + goto retry_load_slab; } c->slab = slab; @@ -3170,9 +3169,9 @@ static __always_inline void *slab_alloc_node(struct kmem_cache *s, /* * Irqless object alloc/free algorithm used here depends on sequence * of fetching cpu_slab's data. tid should be fetched before anything - * on c to guarantee that object and page associated with previous tid + * on c to guarantee that object and slab associated with previous tid * won't be used with current tid. If we fetch tid first, object and - * page could be one associated with next tid and our alloc/free + * slab could be one associated with next tid and our alloc/free * request will be failed. In this case, we will retry. So, no problem. */ barrier(); @@ -3296,7 +3295,7 @@ EXPORT_SYMBOL(kmem_cache_alloc_node_trace); * have a longer lifetime than the cpu slabs in most processing loads. * * So we still attempt to reduce cache line usage. Just take the slab - * lock and free the item. If there is no additional partial page + * lock and free the item. If there is no additional partial slab * handling required then we can return immediately. */ static void __slab_free(struct kmem_cache *s, struct slab *slab, @@ -3374,7 +3373,7 @@ static void __slab_free(struct kmem_cache *s, struct slab *slab, stat(s, FREE_FROZEN); } else if (new.frozen) { /* - * If we just froze the page then put it onto the + * If we just froze the slab then put it onto the * per cpu partial list. */ put_cpu_partial(s, slab, 1); @@ -3428,7 +3427,7 @@ static void __slab_free(struct kmem_cache *s, struct slab *slab, * with all sorts of special processing. * * Bulk free of a freelist with several objects (all pointing to the - * same page) possible by specifying head and tail ptr, plus objects + * same slab) possible by specifying head and tail ptr, plus objects * count (cnt). Bulk free indicated by tail pointer being set. */ static __always_inline void do_slab_free(struct kmem_cache *s, @@ -4213,7 +4212,7 @@ static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) #endif /* - * The larger the object size is, the more pages we want on the partial + * The larger the object size is, the more slabs we want on the partial * list to avoid pounding the page allocator excessively. */ set_min_partial(s, ilog2(s->size) / 2); @@ -4597,12 +4596,12 @@ static int __kmem_cache_do_shrink(struct kmem_cache *s) * Build lists of slabs to discard or promote. * * Note that concurrent frees may occur while we hold the - * list_lock. page->inuse here is the upper limit. + * list_lock. slab->inuse here is the upper limit. */ list_for_each_entry_safe(slab, t, &n->partial, slab_list) { int free = slab->objects - slab->inuse; - /* Do not reread page->inuse */ + /* Do not reread slab->inuse */ barrier(); /* We do not keep full slabs on the list */ @@ -5480,7 +5479,7 @@ static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) slabs += slab->slabs; } - /* Approximate half-full pages , see slub_set_cpu_partial() */ + /* Approximate half-full slabs, see slub_set_cpu_partial() */ objects = (slabs * oo_objects(s->oo)) / 2; len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); -- 2.33.1