[PATCH v0.7 4/5] sched/umcg: add Documentation/userspace-api/umcg.rst

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



Document User Managed Concurrency Groups syscalls, data structures,
state transitions, etc.

Signed-off-by: Peter Oskolkov <posk@xxxxxxxxxx>
---
 Documentation/userspace-api/umcg.rst | 611 +++++++++++++++++++++++++++
 1 file changed, 611 insertions(+)
 create mode 100644 Documentation/userspace-api/umcg.rst

diff --git a/Documentation/userspace-api/umcg.rst b/Documentation/userspace-api/umcg.rst
new file mode 100644
index 000000000000..04206490fea2
--- /dev/null
+++ b/Documentation/userspace-api/umcg.rst
@@ -0,0 +1,611 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=====================================
+UMCG Userspace API
+=====================================
+
+User Managed Concurrency Groups (UMCG) is an M:N threading
+subsystem/toolkit that lets user space application developers
+implement in-process user space schedulers.
+
+.. contents:: :local:
+
+Why? Heterogeneous in-process workloads
+=======================================
+Linux kernel's CFS scheduler is designed for the "common" use case,
+with efficiency/throughput in mind. Work isolation and workloads of
+different "urgency" are addressed by tools such as cgroups, CPU
+affinity, priorities, etc., which are difficult or impossible to
+efficiently use in-process.
+
+For example, a single DBMS process may receive tens of thousands
+requests per second; some of these requests may have strong response
+latency requirements as they serve live user requests (e.g. login
+authentication); some of these requests may not care much about
+latency but must be served within a certain time period (e.g. an
+hourly aggregate usage report); some of these requests are to be
+served only on a best-effort basis and can be NACKed under high load
+(e.g. an exploratory research/hypothesis testing workload).
+
+Beyond different work item latency/throughput requirements as outlined
+above, the DBMS may need to provide certain guarantees to different
+users; for example, user A may "reserve" 1 CPU for their
+high-priority/low latency requests, 2 CPUs for mid-level throughput
+workloads, and be allowed to send as many best-effort requests as
+possible, which may or may not be served, depending on the DBMS load.
+Besides, the best-effort work, started when the load was low, may need
+to be delayed if suddenly a large amount of higher-priority work
+arrives. With hundreds or thousands of users like this, it is very
+difficult to guarantee the application's responsiveness using standard
+Linux tools while maintaining high CPU utilization.
+
+Gaming is another use case: some in-process work must be completed
+before a certain deadline dictated by frame rendering schedule, while
+other work items can be delayed; some work may need to be
+cancelled/discarded because the deadline has passed; etc.
+
+User Managed Concurrency Groups is an M:N threading toolkit that
+allows constructing user space schedulers designed to efficiently
+manage heterogeneous in-process workloads described above while
+maintaining high CPU utilization (95%+).
+
+Requirements
+============
+One relatively established way to design high-efficiency, low-latency
+systems is to split all work into small on-cpu work items, with
+asynchronous I/O and continuations, all executed on a thread pool with
+the number of threads not exceeding the number of available CPUs.
+Although this approach works, it is quite difficult to develop and
+maintain such a system, as, for example, small continuations are
+difficult to piece together when debugging. Besides, such asynchronous
+callback-based systems tend to be somewhat cache-inefficient, as
+continuations can get scheduled on any CPU regardless of cache
+locality.
+
+M:N threading and cooperative user space scheduling enables controlled
+CPU usage (minimal OS preemption), synchronous coding style, and
+better cache locality.
+
+Specifically:
+
+- a variable/fluctuating number M of "application" threads should be
+  "scheduled over" a relatively fixed number N of "kernel" threads,
+  where N is less than or equal to the number of CPUs available;
+- only those application threads that are attached to kernel threads
+  are scheduled "on CPU";
+- application threads should be able to cooperatively yield to each other;
+- when an application thread blocks in kernel (e.g. in I/O), this
+  becomes a scheduling event ("block") that the userspace scheduler
+  should be able to efficiently detect, and reassign a waiting
+  application thread to the freeded "kernel" thread;
+- when a blocked application thread wakes (e.g. its I/O operation
+  completes), this even ("wake") should also be detectable by the
+  userspace scheduler, which should be able to either quickly dispatch
+  the newly woken thread to an idle "kernel" thread or, if all "kernel"
+  threads are busy, put it in the waiting queue;
+- in addition to the above, it would be extremely useful for a
+  separate in-process "watchdog" facility to be able to monitor the
+  state of each of the M+N threads, and to intervene in case of runaway
+  workloads (interrupt/preempt).
+
+
+UMCG kernel API
+===============
+Based on the requrements above, UMCG *kernel* API is build around
+the following ideas:
+
+- *UMCG server*: a task/thread representing "kernel threads", or CPUs
+  from the requirements above;
+- *UMCG worker*: a task/thread representing "application threads", to
+  be scheduled over servers;
+- UMCG *task state*: (NONE), RUNNING, BLOCKED, IDLE: states a UMCG
+  task (a server or a worker) can be in;
+- UMCG task *state flag*: LOCKED, PREEMPTED: additional state flags
+  that can be ORed with the task state to communicate additional information
+  to the kernel;
+- ``struct umcg_task``: a per-task userspace set of data fields, usually
+  residing in the TLS, that fully reflects the current task's UMCG
+  state and controls the way the kernel manages the task;
+- ``sys_umcg_ctl()``: a syscall used to register the current task/thread
+  as a server or a worker, or to unregister a UMCG task;
+- ``sys_umcg_wait()``: a syscall used to put the current task to
+  sleep and/or wake another task, pontentially context-switching
+  between the two tasks on-CPU synchronously.
+
+
+Servers
+=======
+
+When a task/thread is registered as a server, it is in RUNNING
+state and behaves like any other normal task/thread. In addition,
+servers can interact with other UMCG tasks via sys_umcg_wait():
+
+- servers can voluntarily suspend their execution (wait), becoming IDLE;
+- servers can wake other IDLE servers;
+- servers can context-switch between each other.
+
+Note that if a server blocks in the kernel *not* via sys_umcg_wait(),
+it still retains its RUNNING state.
+
+
+Workers
+=======
+
+A worker cannot be RUNNING without having a server associated
+with it, so when a task is first registered as a worker, it enters
+the IDLE state.
+
+- a worker becomes RUNNING when a server calls sys_umcg_wait to
+  context-switch into it; the server goes IDLE, and the worker becomes
+  RUNNING in its place;
+- when a running worker blocks in the kernel, it becomes BLOCKED,
+  its associated server becomes RUNNING and the server's
+  sys_umcg_wait() call from the bullet above returns; this transition
+  is sometimes called "block detection";
+- when the syscall on which a BLOCKED worker completes, the worker
+  becomes IDLE and is added to the list of idle workers; if there
+  is an idle server waiting, the kernel wakes it; this transition
+  is sometimes called "wake detection";
+- running workers can voluntarily suspend their execution (wait),
+  becoming IDLE; their associated servers are woken;
+- a RUNNING worker can context-switch with an IDLE worker; the server
+  of the switched-out worker is transferred to the switched-in worker;
+- any UMCG task can "wake" an IDLE worker via sys_umcg_wait(); unless
+  this is a server running the worker as described in the first bullet
+  in this list, the worker remain IDLE but is added to the idle workers
+  list; this "wake" operation exists for completeness, to make sure
+  wait/wake/context-switch operations are available for all UMCG tasks;
+- the userspace can preempt a RUNNING worker by marking it
+  ``RUNNING|PREEMPTED`` and sending a signal to it; the userspace should
+  have installed a NOP signal handler for the signal; the kernel will
+  then transition the worker into ``IDLE|PREEMPTED`` state and wake
+  its associated server.
+
+UMCG task states
+================
+
+Important: all state transitions described below involve at least
+two steps: the change of the state field in ``struct umcg_task``,
+for example ``RUNNING`` to ``IDLE``, and the corresponding change in
+``struct task_struct`` state, for example a transition between the task
+running on CPU and being descheduled and removed from the kernel runqueue.
+The key principle of UMCG API design is that the party initiating
+the state transition modifies the state variable.
+
+For example, a task going ``IDLE`` first changes its state from ``RUNNING``
+to ``IDLE`` in the userpace and then calls ``sys_umcg_wait()``, which
+completes the transition.
+
+Note on documentation: in ``include/uapi/linux/umcg.h``, task states
+have the form ``UMCG_TASK_RUNNING``, ``UMCG_TASK_BLOCKED``, etc. In
+this document these are usually referred to simply ``RUNNING`` and
+``BLOCKED``, unless it creates ambiguity. Task state flags, e.g.
+``UMCG_TF_PREEMPTED``, are treated similarly.
+
+UMCG task states reflect the view from the userspace, rather than from
+the kernel. There are three fundamental task states:
+
+- ``RUNNING``: indicates that the task is schedulable by the kernel; applies
+  to both servers and workers;
+- ``IDLE``: indicates that the task is *not* schedulable by the kernel
+  (see ``umcg_idle_loop()`` in ``kernel/sched/umcg.c``); applies to
+  both servers and workers;
+- ``BLOCKED``: indicates that the worker is blocked in the kernel;
+  does not apply to servers.
+
+In addition to the three states above, two state flags help with
+state transitions:
+
+- ``LOCKED``: the userspace is preparing the worker for a state transition
+  and "locks" the worker until the worker is ready for the kernel to
+  act on the state transition; used similarly to preempt_disable or
+  irq_disable in the kernel; applies only to workers in ``RUNNING`` or
+  ``IDLE`` state; ``RUNNING|LOCKED`` means "this worker is about to
+  become ``RUNNING``, while ``IDLE|LOCKED`` means "this worker is about
+  to become ``IDLE`` or unregister;
+- ``PREEMPTED``: the userspace indicates it wants the worker to be
+  preempted; there are no situations when both ``LOCKED`` and ``PREEMPTED``
+  flags are set at the same time.
+
+struct umcg_task
+================
+
+From ``include/uapi/linux/umcg.h``:
+
+.. code-block:: C
+
+  struct umcg_task {
+  	uint64_t	state_ts;		/* r/w */
+  	uint32_t	next_tid;		/* r   */
+  	uint32_t	flags;			/* reserved */
+  	uint64_t	idle_workers_ptr;	/* r/w */
+  	uint64_t	idle_server_tid_ptr;	/* r*  */
+  };
+
+Each UMCG task is identified by ``struct umcg_task``, which is provided
+to the kernel when the task is registered via ``sys_umcg_ctl()``.
+
+- ``uint64_t state_ts``: the current state of the task this struct
+  identifies, as described in the previous section, combined with a
+  unique timestamp indicating when the last state change happened.
+
+  Readable/writable by both the kernel and the userspace.
+
+   - bits  0 -  5: task state (RUNNING, IDLE, BLOCKED);
+   - bits  6 -  7: state flags (LOCKED, PREEMPTED);
+   - bits  8 - 12: reserved; must be zeroes;
+   - bits 13 - 17: for userspace use;
+   - bits 18 - 63: timestamp.
+
+   Timestamp: a 46-bit CLOCK_MONOTONIC timestamp, at 16ns resolution.
+
+   It is highly benefitical to tag each state change with a unique
+   timestamp:
+
+   - timestamps will naturally provide instrumentation to measure
+     scheduling delays, both in the kernel and in the userspace;
+   - uniqueness of timestamps (module overflow) guarantees that state
+     change races, especially ABA races, are easily detected and avoided.
+
+   Each timestamp represents the moment in time the state change happened,
+   in nanoseconds, with the lower 4 bits and the upper 16 bits stripped.
+
+   In this document ``'umcg_task.state'`` is often used to talk about
+   ``'umcg_task.state_ts'`` field, as timestamps do not carry semantic
+   meaning at the moment.
+
+   This is how umcg_task.state_ts is updated in the kernel:
+
+  .. code-block:: C
+
+    /* kernel side */
+    /**
+     * umcg_update_state: atomically update umcg_task.state_ts, set new timestamp.
+     * @state_ts   - points to the state_ts member of struct umcg_task to update;
+     * @expected   - the expected value of state_ts, including the timestamp;
+     * @desired    - the desired value of state_ts, state part only;
+     * @may_fault  - whether to use normal or _nofault cmpxchg.
+     *
+     * The function is basically cmpxchg(state_ts, expected, desired), with extra
+     * code to set the timestamp in @desired.
+     */
+    static int umcg_update_state(u64 __user *state_ts, u64 *expected, u64 desired,
+    				bool may_fault)
+    {
+    	u64 curr_ts = (*expected) >> (64 - UMCG_STATE_TIMESTAMP_BITS);
+    	u64 next_ts = ktime_get_ns() >> UMCG_STATE_TIMESTAMP_GRANULARITY;
+
+    	/* Cut higher order bits. */
+    	next_ts &= ((1ULL << UMCG_STATE_TIMESTAMP_BITS) - 1);
+
+    	if (next_ts == curr_ts)
+    		++next_ts;
+
+    	/* Remove an old timestamp, if any. */
+    	desired &= ((1ULL << (64 - UMCG_STATE_TIMESTAMP_BITS)) - 1);
+
+    	/* Set the new timestamp. */
+    	desired |= (next_ts << (64 - UMCG_STATE_TIMESTAMP_BITS));
+
+    	if (may_fault)
+    		return cmpxchg_user_64(state_ts, expected, desired);
+
+    	return cmpxchg_user_64_nofault(state_ts, expected, desired);
+    }
+
+- ``uint32_t next_tid``: contains the TID of the task to context-switch-into
+  in ``sys_umcg_wait()``; can be zero; writable by the userspace, readable
+  by the kernel; if this is a RUNNING worker, this field contains
+  the TID of the server that should be woken when this worker blocks;
+  see ``sys_umcg_wait()`` for more details;
+
+- ``uint32_t flags``: reserved; must be zero.
+
+- ``uint64_t idle_workers_ptr``: this field forms a single-linked list
+  of idle workers: all RUNNING workers have this field set to point
+  to the head of the list (a pointer variable in the userspace).
+
+  When a worker's blocking operation in the kernel completes, the kernel
+  changes the worker's state from ``BLOCKED`` to ``IDLE`` and adds the worker
+  to the top of the list of idle workers using this logic:
+
+  .. code-block:: C
+
+    /* kernel side */
+    /**
+     * enqueue_idle_worker - push an idle worker onto idle_workers_ptr list/stack.
+     *
+     * Returns true on success, false on a fatal failure.
+     */
+    static bool enqueue_idle_worker(struct umcg_task __user *ut_worker)
+    {
+    	u64 __user *node = &ut_worker->idle_workers_ptr;
+    	u64 __user *head_ptr;
+    	u64 first = (u64)node;
+    	u64 head;
+
+    	if (get_user_nosleep(head, node) || !head)
+    		return false;
+
+    	head_ptr = (u64 __user *)head;
+
+    	if (put_user_nosleep(UMCG_IDLE_NODE_PENDING, node))
+    		return false;
+
+    	if (xchg_user_64(head_ptr, &first))
+    		return false;
+
+    	if (put_user_nosleep(first, node))
+    		return false;
+
+    	return true;
+    }
+
+
+  In the userspace the list is cleared atomically using this logic:
+
+  .. code-block:: C
+
+    /* userspace side */
+    uint64_t *idle_workers = (uint64_t *)*head;
+
+    atomic_exchange(&idle_workers, NULL);
+
+  The userspace re-points workers' idle_workers_ptr to the list head
+  variable before the worker is allowed to become RUNNING again.
+
+  When processing the idle workers list, the userspace should wait for
+  workers marked as UMCG_IDLE_NODE_PENDING to have the flag cleared
+  (see ``enqueue_idle_worker()`` above).
+
+- ``uint64_t idle_server_tid_ptr``: points to a variable in the
+  userspace that points to an idle server, i.e. a server in IDLE state waiting
+  in sys_umcg_wait(); read-only; workers must have this field set; not used
+  in servers.
+
+  When a worker's blocking operation in the kernel completes, the kernel
+  changes the worker's state from ``BLOCKED`` to ``IDLE``, adds the worker
+  to the list of idle workers, and wakes the idle server if present;
+  the kernel atomically exchanges ``(*idle_server_tid_ptr)`` with 0,
+  thus waking the idle server, if present, only once.
+  See `State transitions`_ below for more details.
+
+sys_umcg_ctl()
+==============
+
+``int sys_umcg_ctl(uint32_t flags, struct umcg_task *self)`` is used to
+register or unregister the current task as a worker or server. Flags
+can be one of the following:
+
+- ``UMCG_CTL_REGISTER``: register a server;
+- ``UMCG_CTL_REGISTER | UMCG_CTL_WORKER``: register a worker;
+- ``UMCG_CTL_UNREGISTER``: unregister the current server or worker.
+
+When registering a task, ``self`` must point to ``struct umcg_task``
+describing this server or worker; the pointer must remain valid until
+the task is unregistered.
+
+When registering a server, ``self->state`` must be ``RUNNING``; all other
+fields in ``self`` must be zeroes.
+
+When registering a worker, ``self->state`` must be ``RUNNING``;
+``self->idle_server_tid_ptr`` and ``self->idle_workers_ptr`` must be
+valid pointers as described in `struct umcg_task`_; ``self->next_tid`` must
+be zero.
+
+When unregistering a task, ``self`` must be ``NULL``.
+
+sys_umcg_wait()
+===============
+
+``int sys_umcg_wait(uint32_t flags, uint64_t abs_timeout)`` operates
+on registered UMCG servers and workers: ``struct umcg_task *self`` provided
+to ``sys_umcg_ctl()`` when registering the current task is consulted
+in addition to ``flags`` and ``abs_timeout`` parameters.
+
+The function can be used to perform one of the three operations:
+
+- wait: if ``self->next_tid`` is zero, ``sys_umcg_wait()`` puts the current
+  task to sleep;
+- wake: if ``self->next_tid`` is not zero, and ``flags & UMCG_WAIT_WAKE_ONLY``,
+  the task identified by ``next_tid`` is woken;
+- context switch: if ``self->next_tid`` is not zero, and
+  ``!(flags & UMCG_WAIT_WAKE_ONLY)``, the current task is put to sleep and
+  the next task is woken, synchronously switching between the tasks on the
+  current CPU on the fast path.
+
+Flags can be zero or a combination of the following values:
+
+- ``UMCG_WAIT_WAKE_ONLY``: wake the next task, don't put the current task
+  to sleep;
+- ``UMCG_WAIT_WF_CURRENT_CPU``: wake the next task on the curent CPU;
+  this flag has an effect only if ``UMCG_WAIT_WAKE_ONLY`` is set: context
+  switching is always attempted to happen on the curent CPU.
+
+The section below provides more details on how servers and workers interact
+via ``sys_umcg_wait()``, during worker block/wake events, and during
+worker preemption.
+
+State transitions
+=================
+
+As mentioned above, the key principle of UMCG state transitions is that
+**the party initiating the state transition modifies the state of affected
+tasks**.
+
+Below, "``TASK:STATE``" indicates a task T, where T can be either W for
+worker or S for server, in state S, where S can be one of the three states,
+potentially ORed with a state flag. Each individual state transition
+is an atomic operation (cmpxchg) unless indicated otherwise. Also note
+that **the order of state transitions is important and is part of the
+contract between the userspace and the kernel. The kernel is free
+to kill the task (SIGKILL) if the contract is broken.**
+
+Some worker state transitions below include adding ``LOCKED`` flag to
+worker state. This is done to indicate to the kernel that the worker
+is transitioning state and should not participate in the block/wake
+detection routines, which can happen due to interrupts/pagefaults/signals.
+
+``IDLE|LOCKED`` means that a running worker is preparing to sleep, so
+interrupts should not lead to server wakeup; ``RUNNING|LOCKED`` means that
+an idle worker is going to be "scheduled to run", but may not yet have its
+server set up properly.
+
+Key state transitions:
+
+- server to worker context switch ("schedule a worker to run"):
+  ``S:RUNNING+W:IDLE => S:IDLE+W:RUNNING``:
+
+  - in the userspace, in the context of the server S running:
+
+    - ``S:RUNNING => S:IDLE`` (mark self as idle)
+    - ``W:IDLE => W:RUNNING|LOCKED`` (mark the worker as running)
+    - ``W.next_tid := S.tid; S.next_tid := W.tid``
+      (link the server with the worker)
+    - ``W:RUNNING|LOCKED => W:RUNNING`` (unlock the worker)
+    - ``S: sys_umcg_wait()`` (make the syscall)
+
+  - the kernel context switches from the server to the worker; the server
+    sleeps until it becomes ``RUNNING`` during one of the transitions below;
+
+- worker to server context switch (worker "yields"):
+  ``S:IDLE+W:RUNNING => S:RUNNING+W:IDLE``:
+
+  - in the userspace, in the context of the worker W running (note that
+    a running worker has its ``next_tid`` set to point to its server):
+
+    - ``W:RUNNING => W:IDLE|LOCKED`` (mark self as idle)
+    - ``S:IDLE => S:RUNNING`` (mark the server as running)
+    - ``W: sys_umcg_wait()`` (make the syscall)
+
+  - the kernel removes the ``LOCKED`` flag from the worker's state and
+    context switches from the worker to the server; the worker
+    sleeps until it becomes ``RUNNING``;
+
+- worker to worker context switch:
+  ``W1:RUNNING+W2:IDLE => W1:IDLE+W2:RUNNING``:
+
+  - in the userspace, in the context of W1 running:
+
+    - ``W2:IDLE => W2:RUNNING|LOCKED`` (mark W2 as running)
+    - ``W1:RUNNING => W1:IDLE|LOCKED`` (mark self as idle)
+    - ``W2.next_tid := W1.next_tid; S.next_tid := W2.tid``
+      (transfer the server W1 => W2)
+    - ``W1:next_tid := W2.tid`` (indicate that W1 should
+      context-switch into W2)
+    - ``W2:RUNNING|LOCKED => W2:RUNNING`` (unlock W2)
+    - ``W1: sys_umcg_wait()`` (make the syscall)
+
+  - same as above, the kernel removes the ``LOCKED`` flag from the W1's state
+    and context switches to next_tid;
+
+- worker wakeup: ``W:IDLE => W:RUNNING``:
+
+  - in the userspace, a server S can wake a worker W without "running" it:
+
+    - ``S:next_tid :=W.tid``
+    - ``W:next_tid := 0``
+    - ``W:IDLE => W:RUNNING``
+    - ``sys_umcg_wait(UMCG_WAIT_WAKE_ONLY)`` (make the syscall)
+
+  - the kernel will wake the worker W; as the worker does not have a server
+    assigned, "wake detection" will happen, the worker will be immediately
+    marked as ``IDLE`` and added to idle workers list; an idle server, if any,
+    will be woken (see 'wake detection' below);
+  - Note: if needed, it is possible for a worker to wake another worker:
+    the waker marks itself "IDLE|LOCKED", points its next_tid to the wakee,
+    makes the syscall, restores its server in next_tid, marks itself
+    as ``RUNNING``.
+
+- block detection: worker blocks in the kernel: ``S:IDLE+W:RUNNING => S:RUNNING+W:BLOCKED``:
+
+  - when a worker blocks in the kernel in ``RUNNING`` state (not ``LOCKED``),
+    before descheduling the task from the CPU the kernel performs these
+    operations:
+
+    - ``W:RUNNING => W:BLOCKED``
+    - ``S := W.next_tid``
+    - ``S:IDLE => S:RUNNING``
+    - ``try_to_wake_up(S)``
+
+  - if any of the first three operations above fail, the worker is killed via
+    ``SIGKILL``. Note that ``ttwu(S)`` is not required to succeed, as the
+    server may still be transitioning to sleep in ``sys_umcg_wait()``; before
+    actually putting the server to sleep its UMCG state is checked and, if
+    it is ``RUNNING``, sys_umcg_wait() returns to the userspace;
+  - if the worker has its ``LOCKED`` flag set, block detection does not trigger,
+    as the worker is assumed to be in the userspace scheduling code.
+
+- wake detection: worker wakes in the kernel: ``W:BLOCKED => W:IDLE``:
+
+  - all workers' returns to the userspace are intercepted:
+
+    - ``start:`` (a label)
+    - if ``W:RUNNING & W.next_tid != 0``: let the worker exit to the userspace,
+      as this is a ``RUNNING`` worker with a server;
+    - ``W:* => W:IDLE`` (previously blocked or woken without servers workers
+      are not allowed to return to the userspace);
+    - the worker is appended to ``W.idle_workers_ptr`` idle workers list;
+    - ``S := *W.idle_server_tid_ptr; if (S != 0) S:IDLE => S.RUNNING; ttwu(S)``
+    - ``idle_loop(W)``: this is the same idle loop that ``sys_umcg_wait()``
+      uses: it breaks only when the worker becomes ``RUNNING``; when the
+      idle loop exits, it is assumed that the userspace has properly
+      removed the worker from the idle workers list before marking it
+      ``RUNNING``;
+    - ``goto start;`` (repeat from the beginning).
+
+  - the logic above is a bit more complicated in the presence of ``LOCKED`` or
+    ``PREEMPTED`` flags, but the main invariants stay the same:
+
+    - only ``RUNNING`` workers with servers assigned are allowed to run
+      in the userspace (unless ``LOCKED``);
+    - newly ``IDLE`` workers are added to the idle workers list; any
+      user-initiated state change assumes the userspace properly removed
+      the worker from the list;
+    - as with wake detection, any "breach of contract" by the userspace
+      will result in the task termination via ``SIGKILL``.
+
+- worker preemption: ``S:IDLE+W:RUNNING => S:RUNNING+W:IDLE|PREEMPTED``:
+
+  - when the userspace wants to preempt a ``RUNNING`` worker, it changes
+    it state, atomically, ``RUNNING => RUNNING|PREEMPTED`` and sends a signal
+    to the worker via ``tgkill()``; the signal handler, previously set up
+    by the userspace, can be a NOP (note that only ``RUNNING`` workers can be
+    preempted);
+  - if the worker, at the moment the signal arrived, continued to be running
+    on-CPU in the userspace, the "wake detection" code will be triggered that,
+    in addition to what was described above, will check if the worker is in
+    ``RUNNING|PREEMPTED`` state:
+
+    - ``W:RUNNING|PREEMPTED => W:IDLE|PREEMPTED``
+    - ``S := W.next_tid``
+    - ``S:IDLE => S:RUNNING``
+    - ``try_to_wakeup(S)``
+
+  - if the signal arrives after the worker blocks in the kernel, the "block
+    detection" happened as described above, with the following change:
+
+    - ``W:RUNNING|PREEMPTED => W:BLOCKED|PREEMPTED``
+    - ``S := W.next_tid``
+    - ``S:IDLE => S:RUNNING``
+    - ``try_to_wake_up(S)``
+
+  - in any case, the worker's server is woken, with its attached worker
+    (``S.next_tid``) either in ``BLOCKED|PREEMPTED`` or ``IDLE|PREEMPTED``
+    state.
+
+Server-only use cases
+=====================
+
+Some workloads/applications may benefit from fast and synchronous on-CPU
+user-initiated context switches without the need for full userspace
+scheduling (block/wake detection). These applications can use "standalone"
+UMCG servers to wait/wake/context-switch. At the moment only in-process
+operations are allowed. In the future this restriction will be lifted,
+and wait/wake/context-switch operations between servers in related processes
+be permitted (when it is safe to do so, e.g. if the processes belong
+to the same user and/or cgroup).
+
+These "worker-less" operations involve trivial ``RUNNING`` <==> ``IDLE``
+state changes, not discussed here for brevity.
+
--
2.25.1





[Index of Archives]     [Linux ARM Kernel]     [Linux ARM]     [Linux Omap]     [Fedora ARM]     [IETF Annouce]     [Bugtraq]     [Linux OMAP]     [Linux MIPS]     [eCos]     [Asterisk Internet PBX]     [Linux API]

  Powered by Linux