Re: [PATCH v7 5/7] mm: Make alloc_contig_range handle free hugetlb pages

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



+static inline int isolate_or_dissolve_huge_page(struct page *page)
+{
+	return -ENOMEM;

Without CONFIG_HUGETLB_PAGE, there is no way someone could possible pass in something valid. Although it doesn't matter too much, -EINVAL or similar sounds a bit better.

+}
+
  static inline struct page *alloc_huge_page(struct vm_area_struct *vma,
  					   unsigned long addr,
  					   int avoid_reserve)
diff --git a/mm/compaction.c b/mm/compaction.c
index eeba4668c22c..89426b6d1ea3 100644
--- a/mm/compaction.c
+++ b/mm/compaction.c
@@ -788,7 +788,7 @@ static bool too_many_isolated(pg_data_t *pgdat)
   * Isolate all pages that can be migrated from the range specified by
   * [low_pfn, end_pfn). The range is expected to be within same pageblock.
   * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
- * or 0.
+ * -ENOMEM in case we could not allocate a page, or 0.
   * cc->migrate_pfn will contain the next pfn to scan (which may be both less,
   * equal to or more that end_pfn).
   *
@@ -809,6 +809,7 @@ isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
  	bool skip_on_failure = false;
  	unsigned long next_skip_pfn = 0;
  	bool skip_updated = false;
+	bool fatal_error = false;

Can't we use "ret == -ENOMEM" instead of fatal_error?

  	int ret = 0;
cc->migrate_pfn = low_pfn;
@@ -907,6 +908,33 @@ isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
  			valid_page = page;
  		}
+ if (PageHuge(page) && cc->alloc_contig) {
+			ret = isolate_or_dissolve_huge_page(page);
+
+			/*
+			 * Fail isolation in case isolate_or_dissolve_huge_page
+			 * reports an error. In case of -ENOMEM, abort right away.
+			 */
+			if (ret < 0) {
+				/*
+				 * Do not report -EBUSY down the chain.
+				 */
+				if (ret == -ENOMEM)
+					fatal_error = true;
+				else
+					ret = 0;
+				low_pfn += (1UL << compound_order(page)) - 1;
+				goto isolate_fail;
+			}
+
+			/*
+			 * Ok, the hugepage was dissolved. Now these pages are
+			 * Buddy and cannot be re-allocated because they are
+			 * isolated. Fall-through as the check below handles
+			 * Buddy pages.
+			 */
+		}
+
  		/*
  		 * Skip if free. We read page order here without zone lock
  		 * which is generally unsafe, but the race window is small and
@@ -1066,7 +1094,7 @@ isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
  		put_page(page);
isolate_fail:
-		if (!skip_on_failure)
+		if (!skip_on_failure && !fatal_error)
  			continue;
/*
@@ -1092,6 +1120,9 @@ isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
  			 */
  			next_skip_pfn += 1UL << cc->order;
  		}
+
+		if (fatal_error)
+			break;
  	}
/*
@@ -1145,7 +1176,7 @@ isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
   * @end_pfn:   The one-past-last PFN.
   *
   * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
- * or 0.
+ * -ENOMEM in case we could not allocate a page, or 0.
   */
  int
  isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
diff --git a/mm/hugetlb.c b/mm/hugetlb.c
index 0607b2b71ac6..4a664d6e82c1 100644
--- a/mm/hugetlb.c
+++ b/mm/hugetlb.c
@@ -2266,6 +2266,121 @@ static void restore_reserve_on_error(struct hstate *h,
  	}
  }
+/*
+ * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
+ * @h: struct hstate old page belongs to
+ * @old_page: Old page to dissolve
+ * Returns 0 on success, otherwise negated error.
+ */
+
+static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page)
+{
+	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
+	int nid = page_to_nid(old_page);
+	struct page *new_page;
+	int ret = 0;
+
+	/*
+	 * Before dissolving the page, we need to allocate a new one for the
+	 * pool to remain stable. Using alloc_buddy_huge_page() allows us to
+	 * not having to deal with prep_new_page() and avoids dealing of any
+	 * counters. This simplifies and let us do the whole thing under the
+	 * lock.
+	 */
+	new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
+	if (!new_page)
+		return -ENOMEM;
+
+retry:
+	spin_lock_irq(&hugetlb_lock);
+	if (!PageHuge(old_page)) {
+		/*
+		 * Freed from under us. Drop new_page too.
+		 */
+		goto free_new;
+	} else if (page_count(old_page)) {
+		/*
+		 * Someone has grabbed the page, fail for now.
+		 */
+		ret = -EBUSY;
+		goto free_new;
+	} else if (!HPageFreed(old_page)) {
+		/*
+		 * Page's refcount is 0 but it has not been enqueued in the
+		 * freelist yet. Race window is small, so we can succeed here if
+		 * we retry.
+		 */
+		spin_unlock_irq(&hugetlb_lock);
+		cond_resched();
+		goto retry;
+	} else {
+		/*
+		 * Ok, old_page is still a genuine free hugepage. Remove it from
+		 * the freelist and decrease the counters. These will be
+		 * incremented again when calling __prep_account_new_huge_page()
+		 * and enqueue_huge_page() for new_page. The counters will remain
+		 * stable since this happens under the lock.
+		 */
+		remove_hugetlb_page(h, old_page, false);
+
+		/*
+		 * Call __prep_new_huge_page() to construct the hugetlb page, and
+		 * enqueue it then to place it in the freelists. After this,
+		 * counters are back on track. Free hugepages have a refcount of 0,
+		 * so we need to decrease new_page's count as well.
+		 */
+		__prep_new_huge_page(new_page);
+		__prep_account_new_huge_page(h, nid);
+		page_ref_dec(new_page);
+		enqueue_huge_page(h, new_page);
+
+		/*
+		 * Pages have been replaced, we can safely free the old one.
+		 */
+		spin_unlock_irq(&hugetlb_lock);
+		update_and_free_page(h, old_page);
+	}
+
+	return ret;
+
+free_new:
+	spin_unlock_irq(&hugetlb_lock);
+	__free_pages(new_page, huge_page_order(h));
+
+	return ret;
+}
+
+int isolate_or_dissolve_huge_page(struct page *page)
+{
+	struct hstate *h;
+	struct page *head;
+
+	/*
+	 * The page might have been dissolved from under our feet, so make sure
+	 * to carefully check the state under the lock.
+	 * Return success when racing as if we dissolved the page ourselves.
+	 */
+	spin_lock_irq(&hugetlb_lock);
+	if (PageHuge(page)) {
+		head = compound_head(page);
+		h = page_hstate(head);
+	} else {
+		spin_unlock(&hugetlb_lock);
+		return 0;
+	}
+	spin_unlock_irq(&hugetlb_lock);
+
+	/*
+	 * Fence off gigantic pages as there is a cyclic dependency between
+	 * alloc_contig_range and them. Return -ENOME as this has the effect

s/-ENOME/-ENOMEM/

+	 * of bailing out right away without further retrying.
+	 */
+	if (hstate_is_gigantic(h))
+		return -ENOMEM;
+
+	return alloc_and_dissolve_huge_page(h, head);
+}
+
  struct page *alloc_huge_page(struct vm_area_struct *vma,
  				    unsigned long addr, int avoid_reserve)
  {


Complicated stuff, but looks good to me.

--
Thanks,

David / dhildenb






[Index of Archives]     [Linux ARM Kernel]     [Linux ARM]     [Linux Omap]     [Fedora ARM]     [IETF Annouce]     [Bugtraq]     [Linux OMAP]     [Linux MIPS]     [eCos]     [Asterisk Internet PBX]     [Linux API]

  Powered by Linux