On 26/2/21 12:21 am, Muchun Song wrote: > Every HugeTLB has more than one struct page structure. We __know__ that > we only use the first 4(HUGETLB_CGROUP_MIN_ORDER) struct page structures > to store metadata associated with each HugeTLB. > > There are a lot of struct page structures associated with each HugeTLB > page. For tail pages, the value of compound_head is the same. So we can > reuse first page of tail page structures. We map the virtual addresses > of the remaining pages of tail page structures to the first tail page > struct, and then free these page frames. Therefore, we need to reserve > two pages as vmemmap areas. > > When we allocate a HugeTLB page from the buddy, we can free some vmemmap > pages associated with each HugeTLB page. It is more appropriate to do it > in the prep_new_huge_page(). > > The free_vmemmap_pages_per_hpage(), which indicates how many vmemmap > pages associated with a HugeTLB page can be freed, returns zero for > now, which means the feature is disabled. We will enable it once all > the infrastructure is there. > > Signed-off-by: Muchun Song <songmuchun@xxxxxxxxxxxxx> > Reviewed-by: Oscar Salvador <osalvador@xxxxxxx> > --- > include/linux/bootmem_info.h | 27 +++++- > include/linux/mm.h | 3 + > mm/Makefile | 1 + > mm/hugetlb.c | 3 + > mm/hugetlb_vmemmap.c | 219 +++++++++++++++++++++++++++++++++++++++++++ > mm/hugetlb_vmemmap.h | 20 ++++ > mm/sparse-vmemmap.c | 207 ++++++++++++++++++++++++++++++++++++++++ > 7 files changed, 479 insertions(+), 1 deletion(-) > create mode 100644 mm/hugetlb_vmemmap.c > create mode 100644 mm/hugetlb_vmemmap.h > > diff --git a/include/linux/bootmem_info.h b/include/linux/bootmem_info.h > index 4ed6dee1adc9..ec03a624dfa2 100644 > --- a/include/linux/bootmem_info.h > +++ b/include/linux/bootmem_info.h > @@ -2,7 +2,7 @@ > #ifndef __LINUX_BOOTMEM_INFO_H > #define __LINUX_BOOTMEM_INFO_H > > -#include <linux/mmzone.h> > +#include <linux/mm.h> > > /* > * Types for free bootmem stored in page->lru.next. These have to be in > @@ -22,6 +22,27 @@ void __init register_page_bootmem_info_node(struct pglist_data *pgdat); > void get_page_bootmem(unsigned long info, struct page *page, > unsigned long type); > void put_page_bootmem(struct page *page); > + > +/* > + * Any memory allocated via the memblock allocator and not via the > + * buddy will be marked reserved already in the memmap. For those > + * pages, we can call this function to free it to buddy allocator. > + */ > +static inline void free_bootmem_page(struct page *page) > +{ > + unsigned long magic = (unsigned long)page->freelist; > + > + /* > + * The reserve_bootmem_region sets the reserved flag on bootmem > + * pages. > + */ > + VM_BUG_ON_PAGE(page_ref_count(page) != 2, page); > + > + if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) > + put_page_bootmem(page); > + else > + VM_BUG_ON_PAGE(1, page); > +} > #else > static inline void register_page_bootmem_info_node(struct pglist_data *pgdat) > { > @@ -35,6 +56,10 @@ static inline void get_page_bootmem(unsigned long info, struct page *page, > unsigned long type) > { > } > + > +static inline void free_bootmem_page(struct page *page) > +{ > +} > #endif > > #endif /* __LINUX_BOOTMEM_INFO_H */ > diff --git a/include/linux/mm.h b/include/linux/mm.h > index 77e64e3eac80..4ddfc31f21c6 100644 > --- a/include/linux/mm.h > +++ b/include/linux/mm.h > @@ -2971,6 +2971,9 @@ static inline void print_vma_addr(char *prefix, unsigned long rip) > } > #endif > > +void vmemmap_remap_free(unsigned long start, unsigned long end, > + unsigned long reuse); > + > void *sparse_buffer_alloc(unsigned long size); > struct page * __populate_section_memmap(unsigned long pfn, > unsigned long nr_pages, int nid, struct vmem_altmap *altmap); > diff --git a/mm/Makefile b/mm/Makefile > index daabf86d7da8..3d7d57e3b55b 100644 > --- a/mm/Makefile > +++ b/mm/Makefile > @@ -71,6 +71,7 @@ obj-$(CONFIG_FRONTSWAP) += frontswap.o > obj-$(CONFIG_ZSWAP) += zswap.o > obj-$(CONFIG_HAS_DMA) += dmapool.o > obj-$(CONFIG_HUGETLBFS) += hugetlb.o > +obj-$(CONFIG_HUGETLB_PAGE_FREE_VMEMMAP) += hugetlb_vmemmap.o > obj-$(CONFIG_NUMA) += mempolicy.o > obj-$(CONFIG_SPARSEMEM) += sparse.o > obj-$(CONFIG_SPARSEMEM_VMEMMAP) += sparse-vmemmap.o > diff --git a/mm/hugetlb.c b/mm/hugetlb.c > index c232cb67dda2..43fed6785322 100644 > --- a/mm/hugetlb.c > +++ b/mm/hugetlb.c > @@ -42,6 +42,7 @@ > #include <linux/userfaultfd_k.h> > #include <linux/page_owner.h> > #include "internal.h" > +#include "hugetlb_vmemmap.h" > > int hugetlb_max_hstate __read_mostly; > unsigned int default_hstate_idx; > @@ -1463,6 +1464,8 @@ void free_huge_page(struct page *page) > > static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) > { > + free_huge_page_vmemmap(h, page); > + > INIT_LIST_HEAD(&page->lru); > set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); > set_hugetlb_cgroup(page, NULL); > diff --git a/mm/hugetlb_vmemmap.c b/mm/hugetlb_vmemmap.c > new file mode 100644 > index 000000000000..0209b736e0b4 > --- /dev/null > +++ b/mm/hugetlb_vmemmap.c > @@ -0,0 +1,219 @@ > +// SPDX-License-Identifier: GPL-2.0 > +/* > + * Free some vmemmap pages of HugeTLB > + * > + * Copyright (c) 2020, Bytedance. All rights reserved. > + * > + * Author: Muchun Song <songmuchun@xxxxxxxxxxxxx> > + * > + * The struct page structures (page structs) are used to describe a physical > + * page frame. By default, there is a one-to-one mapping from a page frame to > + * it's corresponding page struct. > + * > + * HugeTLB pages consist of multiple base page size pages and is supported by > + * many architectures. See hugetlbpage.rst in the Documentation directory for > + * more details. On the x86-64 architecture, HugeTLB pages of size 2MB and 1GB > + * are currently supported. Since the base page size on x86 is 4KB, a 2MB > + * HugeTLB page consists of 512 base pages and a 1GB HugeTLB page consists of > + * 4096 base pages. For each base page, there is a corresponding page struct. > + * > + * Within the HugeTLB subsystem, only the first 4 page structs are used to > + * contain unique information about a HugeTLB page. HUGETLB_CGROUP_MIN_ORDER > + * provides this upper limit. The only 'useful' information in the remaining > + * page structs is the compound_head field, and this field is the same for all > + * tail pages. > + * > + * By removing redundant page structs for HugeTLB pages, memory can be returned > + * to the buddy allocator for other uses. > + * > + * Different architectures support different HugeTLB pages. For example, the > + * following table is the HugeTLB page size supported by x86 and arm64 > + * architectures. Because arm64 supports 4k, 16k, and 64k base pages and > + * supports contiguous entries, so it supports many kinds of sizes of HugeTLB > + * page. > + * > + * +--------------+-----------+-----------------------------------------------+ > + * | Architecture | Page Size | HugeTLB Page Size | > + * +--------------+-----------+-----------+-----------+-----------+-----------+ > + * | x86-64 | 4KB | 2MB | 1GB | | | > + * +--------------+-----------+-----------+-----------+-----------+-----------+ > + * | | 4KB | 64KB | 2MB | 32MB | 1GB | > + * | +-----------+-----------+-----------+-----------+-----------+ > + * | arm64 | 16KB | 2MB | 32MB | 1GB | | > + * | +-----------+-----------+-----------+-----------+-----------+ > + * | | 64KB | 2MB | 512MB | 16GB | | > + * +--------------+-----------+-----------+-----------+-----------+-----------+ > + * > + * When the system boot up, every HugeTLB page has more than one struct page > + * structs which size is (unit: pages): > + * > + * struct_size = HugeTLB_Size / PAGE_SIZE * sizeof(struct page) / PAGE_SIZE > + * > + * Where HugeTLB_Size is the size of the HugeTLB page. We know that the size > + * of the HugeTLB page is always n times PAGE_SIZE. So we can get the following > + * relationship. > + * > + * HugeTLB_Size = n * PAGE_SIZE > + * > + * Then, > + * > + * struct_size = n * PAGE_SIZE / PAGE_SIZE * sizeof(struct page) / PAGE_SIZE > + * = n * sizeof(struct page) / PAGE_SIZE > + * > + * We can use huge mapping at the pud/pmd level for the HugeTLB page. > + * > + * For the HugeTLB page of the pmd level mapping, then > + * > + * struct_size = n * sizeof(struct page) / PAGE_SIZE > + * = PAGE_SIZE / sizeof(pte_t) * sizeof(struct page) / PAGE_SIZE > + * = sizeof(struct page) / sizeof(pte_t) > + * = 64 / 8 > + * = 8 (pages) > + * > + * Where n is how many pte entries which one page can contains. So the value of > + * n is (PAGE_SIZE / sizeof(pte_t)). > + * > + * This optimization only supports 64-bit system, so the value of sizeof(pte_t) > + * is 8. And this optimization also applicable only when the size of struct page > + * is a power of two. In most cases, the size of struct page is 64 bytes (e.g. > + * x86-64 and arm64). So if we use pmd level mapping for a HugeTLB page, the > + * size of struct page structs of it is 8 page frames which size depends on the > + * size of the base page. > + * > + * For the HugeTLB page of the pud level mapping, then > + * > + * struct_size = PAGE_SIZE / sizeof(pmd_t) * struct_size(pmd) > + * = PAGE_SIZE / 8 * 8 (pages) > + * = PAGE_SIZE (pages) > + * > + * Where the struct_size(pmd) is the size of the struct page structs of a > + * HugeTLB page of the pmd level mapping. > + * > + * E.g.: A 2MB HugeTLB page on x86_64 consists in 8 page frames while 1GB > + * HugeTLB page consists in 4096. > + * > + * Next, we take the pmd level mapping of the HugeTLB page as an example to > + * show the internal implementation of this optimization. There are 8 pages > + * struct page structs associated with a HugeTLB page which is pmd mapped. > + * > + * Here is how things look before optimization. > + * > + * HugeTLB struct pages(8 pages) page frame(8 pages) > + * +-----------+ ---virt_to_page---> +-----------+ mapping to +-----------+ > + * | | | 0 | -------------> | 0 | > + * | | +-----------+ +-----------+ > + * | | | 1 | -------------> | 1 | > + * | | +-----------+ +-----------+ > + * | | | 2 | -------------> | 2 | > + * | | +-----------+ +-----------+ > + * | | | 3 | -------------> | 3 | > + * | | +-----------+ +-----------+ > + * | | | 4 | -------------> | 4 | > + * | PMD | +-----------+ +-----------+ > + * | level | | 5 | -------------> | 5 | > + * | mapping | +-----------+ +-----------+ > + * | | | 6 | -------------> | 6 | > + * | | +-----------+ +-----------+ > + * | | | 7 | -------------> | 7 | > + * | | +-----------+ +-----------+ > + * | | > + * | | > + * | | > + * +-----------+ > + * > + * The value of page->compound_head is the same for all tail pages. The first > + * page of page structs (page 0) associated with the HugeTLB page contains the 4 > + * page structs necessary to describe the HugeTLB. The only use of the remaining > + * pages of page structs (page 1 to page 7) is to point to page->compound_head. > + * Therefore, we can remap pages 2 to 7 to page 1. Only 2 pages of page structs > + * will be used for each HugeTLB page. This will allow us to free the remaining > + * 6 pages to the buddy allocator. > + * > + * Here is how things look after remapping. > + * > + * HugeTLB struct pages(8 pages) page frame(8 pages) > + * +-----------+ ---virt_to_page---> +-----------+ mapping to +-----------+ > + * | | | 0 | -------------> | 0 | > + * | | +-----------+ +-----------+ > + * | | | 1 | -------------> | 1 | > + * | | +-----------+ +-----------+ > + * | | | 2 | ----------------^ ^ ^ ^ ^ ^ > + * | | +-----------+ | | | | | > + * | | | 3 | ------------------+ | | | | > + * | | +-----------+ | | | | > + * | | | 4 | --------------------+ | | | > + * | PMD | +-----------+ | | | > + * | level | | 5 | ----------------------+ | | > + * | mapping | +-----------+ | | > + * | | | 6 | ------------------------+ | > + * | | +-----------+ | > + * | | | 7 | --------------------------+ > + * | | +-----------+ > + * | | > + * | | > + * | | > + * +-----------+ > + * > + * When a HugeTLB is freed to the buddy system, we should allocate 6 pages for > + * vmemmap pages and restore the previous mapping relationship. > + * > + * For the HugeTLB page of the pud level mapping. It is similar to the former. > + * We also can use this approach to free (PAGE_SIZE - 2) vmemmap pages. > + * > + * Apart from the HugeTLB page of the pmd/pud level mapping, some architectures > + * (e.g. aarch64) provides a contiguous bit in the translation table entries > + * that hints to the MMU to indicate that it is one of a contiguous set of > + * entries that can be cached in a single TLB entry. > + * > + * The contiguous bit is used to increase the mapping size at the pmd and pte > + * (last) level. So this type of HugeTLB page can be optimized only when its > + * size of the struct page structs is greater than 2 pages. > + */ > +#include "hugetlb_vmemmap.h" > + > +/* > + * There are a lot of struct page structures associated with each HugeTLB page. > + * For tail pages, the value of compound_head is the same. So we can reuse first > + * page of tail page structures. We map the virtual addresses of the remaining > + * pages of tail page structures to the first tail page struct, and then free > + * these page frames. Therefore, we need to reserve two pages as vmemmap areas. > + */ > +#define RESERVE_VMEMMAP_NR 2U > +#define RESERVE_VMEMMAP_SIZE (RESERVE_VMEMMAP_NR << PAGE_SHIFT) > + > +/* > + * How many vmemmap pages associated with a HugeTLB page that can be freed > + * to the buddy allocator. > + * > + * Todo: Returns zero for now, which means the feature is disabled. We will > + * enable it once all the infrastructure is there. > + */ > +static inline unsigned int free_vmemmap_pages_per_hpage(struct hstate *h) > +{ > + return 0; > +} > + > +static inline unsigned long free_vmemmap_pages_size_per_hpage(struct hstate *h) > +{ > + return (unsigned long)free_vmemmap_pages_per_hpage(h) << PAGE_SHIFT; > +} > + > +void free_huge_page_vmemmap(struct hstate *h, struct page *head) > +{ > + unsigned long vmemmap_addr = (unsigned long)head; > + unsigned long vmemmap_end, vmemmap_reuse; > + > + if (!free_vmemmap_pages_per_hpage(h)) > + return; > + > + vmemmap_addr += RESERVE_VMEMMAP_SIZE; > + vmemmap_end = vmemmap_addr + free_vmemmap_pages_size_per_hpage(h); > + vmemmap_reuse = vmemmap_addr - PAGE_SIZE; > + > + /* > + * Remap the vmemmap virtual address range [@vmemmap_addr, @vmemmap_end) > + * to the page which @vmemmap_reuse is mapped to, then free the pages > + * which the range [@vmemmap_addr, @vmemmap_end] is mapped to. > + */ > + vmemmap_remap_free(vmemmap_addr, vmemmap_end, vmemmap_reuse); > +} > diff --git a/mm/hugetlb_vmemmap.h b/mm/hugetlb_vmemmap.h > new file mode 100644 > index 000000000000..6923f03534d5 > --- /dev/null > +++ b/mm/hugetlb_vmemmap.h > @@ -0,0 +1,20 @@ > +// SPDX-License-Identifier: GPL-2.0 > +/* > + * Free some vmemmap pages of HugeTLB > + * > + * Copyright (c) 2020, Bytedance. All rights reserved. > + * > + * Author: Muchun Song <songmuchun@xxxxxxxxxxxxx> > + */ > +#ifndef _LINUX_HUGETLB_VMEMMAP_H > +#define _LINUX_HUGETLB_VMEMMAP_H > +#include <linux/hugetlb.h> > + > +#ifdef CONFIG_HUGETLB_PAGE_FREE_VMEMMAP > +void free_huge_page_vmemmap(struct hstate *h, struct page *head); > +#else > +static inline void free_huge_page_vmemmap(struct hstate *h, struct page *head) > +{ > +} > +#endif /* CONFIG_HUGETLB_PAGE_FREE_VMEMMAP */ > +#endif /* _LINUX_HUGETLB_VMEMMAP_H */ > diff --git a/mm/sparse-vmemmap.c b/mm/sparse-vmemmap.c > index 16183d85a7d5..d3076a7a3783 100644 > --- a/mm/sparse-vmemmap.c > +++ b/mm/sparse-vmemmap.c > @@ -27,8 +27,215 @@ > #include <linux/spinlock.h> > #include <linux/vmalloc.h> > #include <linux/sched.h> > +#include <linux/pgtable.h> > +#include <linux/bootmem_info.h> > + > #include <asm/dma.h> > #include <asm/pgalloc.h> > +#include <asm/tlbflush.h> > + > +/** > + * vmemmap_remap_walk - walk vmemmap page table > + * > + * @remap_pte: called for each lowest-level entry (PTE). > + * @reuse_page: the page which is reused for the tail vmemmap pages. > + * @reuse_addr: the virtual address of the @reuse_page page. > + * @vmemmap_pages: the list head of the vmemmap pages that can be freed. > + */ > +struct vmemmap_remap_walk { > + void (*remap_pte)(pte_t *pte, unsigned long addr, > + struct vmemmap_remap_walk *walk); > + struct page *reuse_page; > + unsigned long reuse_addr; > + struct list_head *vmemmap_pages; > +}; > + > +static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr, > + unsigned long end, > + struct vmemmap_remap_walk *walk) > +{ > + pte_t *pte; > + > + pte = pte_offset_kernel(pmd, addr); > + > + /* > + * The reuse_page is found 'first' in table walk before we start > + * remapping (which is calling @walk->remap_pte). > + */ > + if (!walk->reuse_page) { > + BUG_ON(pte_none(*pte)); > + BUG_ON(walk->reuse_addr != addr); > + > + walk->reuse_page = pte_page(*pte++); The concurrency semantics of this code are not clear, do we need READ_ONCE()/ WRITE_ONCE() semantics if this page walk is lockless? Can we run this code in parallel on the same section? I presume not > + /* > + * Because the reuse address is part of the range that we are > + * walking, skip the reuse address range. > + */ > + addr += PAGE_SIZE; > + } > + > + for (; addr != end; addr += PAGE_SIZE, pte++) { > + BUG_ON(pte_none(*pte)); > + > + walk->remap_pte(pte, addr, walk); > + } > +} > + > +static void vmemmap_pmd_range(pud_t *pud, unsigned long addr, > + unsigned long end, > + struct vmemmap_remap_walk *walk) > +{ > + pmd_t *pmd; > + unsigned long next; > + > + pmd = pmd_offset(pud, addr); > + do { > + BUG_ON(pmd_none(*pmd) || pmd_leaf(*pmd)); > + > + next = pmd_addr_end(addr, end); > + vmemmap_pte_range(pmd, addr, next, walk); > + } while (pmd++, addr = next, addr != end); > +} > + > +static void vmemmap_pud_range(p4d_t *p4d, unsigned long addr, > + unsigned long end, > + struct vmemmap_remap_walk *walk) > +{ > + pud_t *pud; > + unsigned long next; > + > + pud = pud_offset(p4d, addr); > + do { > + BUG_ON(pud_none(*pud)); > + > + next = pud_addr_end(addr, end); > + vmemmap_pmd_range(pud, addr, next, walk); > + } while (pud++, addr = next, addr != end); > +} > + > +static void vmemmap_p4d_range(pgd_t *pgd, unsigned long addr, > + unsigned long end, > + struct vmemmap_remap_walk *walk) > +{ > + p4d_t *p4d; > + unsigned long next; > + > + p4d = p4d_offset(pgd, addr); > + do { > + BUG_ON(p4d_none(*p4d)); > + > + next = p4d_addr_end(addr, end); > + vmemmap_pud_range(p4d, addr, next, walk); > + } while (p4d++, addr = next, addr != end); > +} > + > +static void vmemmap_remap_range(unsigned long start, unsigned long end, > + struct vmemmap_remap_walk *walk) > +{ > + unsigned long addr = start; > + unsigned long next; > + pgd_t *pgd; > + > + VM_BUG_ON(!IS_ALIGNED(start, PAGE_SIZE)); > + VM_BUG_ON(!IS_ALIGNED(end, PAGE_SIZE)); > + > + pgd = pgd_offset_k(addr); > + do { > + BUG_ON(pgd_none(*pgd)); > + > + next = pgd_addr_end(addr, end); > + vmemmap_p4d_range(pgd, addr, next, walk); > + } while (pgd++, addr = next, addr != end); > + > + /* > + * We only change the mapping of the vmemmap virtual address range > + * [@start + PAGE_SIZE, end), so we only need to flush the TLB which > + * belongs to the range. > + */ > + flush_tlb_kernel_range(start + PAGE_SIZE, end); > +} > + > +/* > + * Free a vmemmap page. A vmemmap page can be allocated from the memblock > + * allocator or buddy allocator. If the PG_reserved flag is set, it means > + * that it allocated from the memblock allocator, just free it via the > + * free_bootmem_page(). Otherwise, use __free_page(). > + */ > +static inline void free_vmemmap_page(struct page *page) > +{ > + if (PageReserved(page)) > + free_bootmem_page(page); > + else > + __free_page(page); > +} > + > +/* Free a list of the vmemmap pages */ > +static void free_vmemmap_page_list(struct list_head *list) > +{ > + struct page *page, *next; > + > + list_for_each_entry_safe(page, next, list, lru) { > + list_del(&page->lru); > + free_vmemmap_page(page); > + } > +} > + > +static void vmemmap_remap_pte(pte_t *pte, unsigned long addr, > + struct vmemmap_remap_walk *walk) > +{ > + /* > + * Remap the tail pages as read-only to catch illegal write operation > + * to the tail pages. > + */ > + pgprot_t pgprot = PAGE_KERNEL_RO; > + pte_t entry = mk_pte(walk->reuse_page, pgprot); > + struct page *page = pte_page(*pte); > + > + list_add(&page->lru, walk->vmemmap_pages); > + set_pte_at(&init_mm, addr, pte, entry); > +} > + > +/** > + * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end) > + * to the page which @reuse is mapped to, then free vmemmap > + * which the range are mapped to. > + * @start: start address of the vmemmap virtual address range that we want > + * to remap. > + * @end: end address of the vmemmap virtual address range that we want to > + * remap. > + * @reuse: reuse address. > + * > + * Note: This function depends on vmemmap being base page mapped. Please make > + * sure that we disable PMD mapping of vmemmap pages when calling this function. This is something that the walking code enforces via BUG_ON's right? > + */ > +void vmemmap_remap_free(unsigned long start, unsigned long end, > + unsigned long reuse) > +{ > + LIST_HEAD(vmemmap_pages); > + struct vmemmap_remap_walk walk = { > + .remap_pte = vmemmap_remap_pte, > + .reuse_addr = reuse, > + .vmemmap_pages = &vmemmap_pages, > + }; > + > + /* > + * In order to make remapping routine most efficient for the huge pages, > + * the routine of vmemmap page table walking has the following rules > + * (see more details from the vmemmap_pte_range()): > + * > + * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE) > + * should be continuous. > + * - The @reuse address is part of the range [@reuse, @end) that we are > + * walking which is passed to vmemmap_remap_range(). > + * - The @reuse address is the first in the complete range. > + * > + * So we need to make sure that @start and @reuse meet the above rules. > + */ > + BUG_ON(start - reuse != PAGE_SIZE); Why even take a reuse arg then, just set reuse = start - PAGE_SIZE? If we do that we can rename the function to reflect that the second page is reused or keep this function and create an inline wrapper with reuse set to start - PAGE_SIZE and use that for this use case and remove this BUG_ON > + > + vmemmap_remap_range(reuse, end, &walk); > + free_vmemmap_page_list(&vmemmap_pages); > +} > > /* > * Allocate a block of memory to be used to back the virtual memory map > Balbir