[PATCH v19 08/25] x86/mm: Introduce _PAGE_COW

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



There is essentially no room left in the x86 hardware PTEs on some OSes
(not Linux).  That left the hardware architects looking for a way to
represent a new memory type (shadow stack) within the existing bits.
They chose to repurpose a lightly-used state: Write=0, Dirty=1.

The reason it's lightly used is that Dirty=1 is normally set by hardware
and cannot normally be set by hardware on a Write=0 PTE.  Software must
normally be involved to create one of these PTEs, so software can simply
opt to not create them.

In places where Linux normally creates Write=0, Dirty=1, it can use the
software-defined _PAGE_COW in place of the hardware _PAGE_DIRTY.  In other
words, whenever Linux needs to create Write=0, Dirty=1, it instead creates
Write=0, Cow=1, except for shadow stack, which is Write=0, Dirty=1.  This
clearly separates shadow stack from other data, and results in the
following:

(a) A modified, copy-on-write (COW) page: (Write=0, Cow=1)
(b) A R/O page that has been COW'ed: (Write=0, Cow=1)
    The user page is in a R/O VMA, and get_user_pages() needs a writable
    copy.  The page fault handler creates a copy of the page and sets
    the new copy's PTE as Write=0 and Cow=1.
(c) A shadow stack PTE: (Write=0, Dirty=1)
(d) A shared shadow stack PTE: (Write=0, Cow=1)
    When a shadow stack page is being shared among processes (this happens
    at fork()), its PTE is made Dirty=0, so the next shadow stack access
    causes a fault, and the page is duplicated and Dirty=1 is set again.
    This is the COW equivalent for shadow stack pages, even though it's
    copy-on-access rather than copy-on-write.
(e) A page where the processor observed a Write=1 PTE, started a write, set
    Dirty=1, but then observed a Write=0 PTE.  That's possible today, but
    will not happen on processors that support shadow stack.

Define _PAGE_COW and update pte_*() helpers and apply the same changes to
pmd and pud.

After this, there are six free bits left in the 64-bit PTE, and no more
free bits in the 32-bit PTE (except for PAE) and Shadow Stack is not
implemented for the 32-bit kernel.

Signed-off-by: Yu-cheng Yu <yu-cheng.yu@xxxxxxxxx>
---
 arch/x86/include/asm/pgtable.h       | 125 ++++++++++++++++++++++++---
 arch/x86/include/asm/pgtable_types.h |  42 ++++++++-
 2 files changed, 154 insertions(+), 13 deletions(-)

diff --git a/arch/x86/include/asm/pgtable.h b/arch/x86/include/asm/pgtable.h
index a02c67291cfc..4b0ec61510dc 100644
--- a/arch/x86/include/asm/pgtable.h
+++ b/arch/x86/include/asm/pgtable.h
@@ -121,9 +121,9 @@ extern pmdval_t early_pmd_flags;
  * The following only work if pte_present() is true.
  * Undefined behaviour if not..
  */
-static inline int pte_dirty(pte_t pte)
+static inline bool pte_dirty(pte_t pte)
 {
-	return pte_flags(pte) & _PAGE_DIRTY;
+	return pte_flags(pte) & _PAGE_DIRTY_BITS;
 }
 
 
@@ -160,9 +160,9 @@ static inline int pte_young(pte_t pte)
 	return pte_flags(pte) & _PAGE_ACCESSED;
 }
 
-static inline int pmd_dirty(pmd_t pmd)
+static inline bool pmd_dirty(pmd_t pmd)
 {
-	return pmd_flags(pmd) & _PAGE_DIRTY;
+	return pmd_flags(pmd) & _PAGE_DIRTY_BITS;
 }
 
 static inline int pmd_young(pmd_t pmd)
@@ -170,9 +170,9 @@ static inline int pmd_young(pmd_t pmd)
 	return pmd_flags(pmd) & _PAGE_ACCESSED;
 }
 
-static inline int pud_dirty(pud_t pud)
+static inline bool pud_dirty(pud_t pud)
 {
-	return pud_flags(pud) & _PAGE_DIRTY;
+	return pud_flags(pud) & _PAGE_DIRTY_BITS;
 }
 
 static inline int pud_young(pud_t pud)
@@ -182,7 +182,14 @@ static inline int pud_young(pud_t pud)
 
 static inline int pte_write(pte_t pte)
 {
-	return pte_flags(pte) & _PAGE_RW;
+	/*
+	 * If _PAGE_DIRTY is set, the PTE must either have _PAGE_RW or be
+	 * a shadow stack PTE, which is logically writable.
+	 */
+	if (cpu_feature_enabled(X86_FEATURE_SHSTK))
+		return pte_flags(pte) & (_PAGE_RW | _PAGE_DIRTY);
+	else
+		return pte_flags(pte) & _PAGE_RW;
 }
 
 static inline int pte_huge(pte_t pte)
@@ -333,7 +340,7 @@ static inline pte_t pte_clear_uffd_wp(pte_t pte)
 
 static inline pte_t pte_mkclean(pte_t pte)
 {
-	return pte_clear_flags(pte, _PAGE_DIRTY);
+	return pte_clear_flags(pte, _PAGE_DIRTY_BITS);
 }
 
 static inline pte_t pte_mkold(pte_t pte)
@@ -343,6 +350,18 @@ static inline pte_t pte_mkold(pte_t pte)
 
 static inline pte_t pte_wrprotect(pte_t pte)
 {
+	/*
+	 * Blindly clearing _PAGE_RW might accidentally create
+	 * a shadow stack PTE (RW=0, Dirty=1).  Move the hardware
+	 * dirty value to the software bit.
+	 */
+	if (cpu_feature_enabled(X86_FEATURE_SHSTK)) {
+		if (pte_flags(pte) & _PAGE_DIRTY) {
+			pte = pte_clear_flags(pte, _PAGE_DIRTY);
+			pte = pte_set_flags(pte, _PAGE_COW);
+		}
+	}
+
 	return pte_clear_flags(pte, _PAGE_RW);
 }
 
@@ -353,6 +372,18 @@ static inline pte_t pte_mkexec(pte_t pte)
 
 static inline pte_t pte_mkdirty(pte_t pte)
 {
+	pteval_t dirty = _PAGE_DIRTY;
+
+	/* Avoid creating (HW)Dirty=1, Write=0 PTEs */
+	if (cpu_feature_enabled(X86_FEATURE_SHSTK) && !pte_write(pte))
+		dirty = _PAGE_COW;
+
+	return pte_set_flags(pte, dirty | _PAGE_SOFT_DIRTY);
+}
+
+static inline pte_t pte_mkwrite_shstk(pte_t pte)
+{
+	pte = pte_clear_flags(pte, _PAGE_COW);
 	return pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
 }
 
@@ -363,6 +394,13 @@ static inline pte_t pte_mkyoung(pte_t pte)
 
 static inline pte_t pte_mkwrite(pte_t pte)
 {
+	if (cpu_feature_enabled(X86_FEATURE_SHSTK)) {
+		if (pte_flags(pte) & _PAGE_COW) {
+			pte = pte_clear_flags(pte, _PAGE_COW);
+			pte = pte_set_flags(pte, _PAGE_DIRTY);
+		}
+	}
+
 	return pte_set_flags(pte, _PAGE_RW);
 }
 
@@ -434,16 +472,40 @@ static inline pmd_t pmd_mkold(pmd_t pmd)
 
 static inline pmd_t pmd_mkclean(pmd_t pmd)
 {
-	return pmd_clear_flags(pmd, _PAGE_DIRTY);
+	return pmd_clear_flags(pmd, _PAGE_DIRTY_BITS);
 }
 
 static inline pmd_t pmd_wrprotect(pmd_t pmd)
 {
+	/*
+	 * Blindly clearing _PAGE_RW might accidentally create
+	 * a shadow stack PMD (RW=0, Dirty=1).  Move the hardware
+	 * dirty value to the software bit.
+	 */
+	if (cpu_feature_enabled(X86_FEATURE_SHSTK)) {
+		if (pmd_flags(pmd) & _PAGE_DIRTY) {
+			pmd = pmd_clear_flags(pmd, _PAGE_DIRTY);
+			pmd = pmd_set_flags(pmd, _PAGE_COW);
+		}
+	}
+
 	return pmd_clear_flags(pmd, _PAGE_RW);
 }
 
 static inline pmd_t pmd_mkdirty(pmd_t pmd)
 {
+	pmdval_t dirty = _PAGE_DIRTY;
+
+	/* Avoid creating (HW)Dirty=1, Write=0 PMDs */
+	if (cpu_feature_enabled(X86_FEATURE_SHSTK) && !(pmd_flags(pmd) & _PAGE_RW))
+		dirty = _PAGE_COW;
+
+	return pmd_set_flags(pmd, dirty | _PAGE_SOFT_DIRTY);
+}
+
+static inline pmd_t pmd_mkwrite_shstk(pmd_t pmd)
+{
+	pmd = pmd_clear_flags(pmd, _PAGE_COW);
 	return pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
 }
 
@@ -464,6 +526,13 @@ static inline pmd_t pmd_mkyoung(pmd_t pmd)
 
 static inline pmd_t pmd_mkwrite(pmd_t pmd)
 {
+	if (cpu_feature_enabled(X86_FEATURE_SHSTK)) {
+		if (pmd_flags(pmd) & _PAGE_COW) {
+			pmd = pmd_clear_flags(pmd, _PAGE_COW);
+			pmd = pmd_set_flags(pmd, _PAGE_DIRTY);
+		}
+	}
+
 	return pmd_set_flags(pmd, _PAGE_RW);
 }
 
@@ -488,17 +557,35 @@ static inline pud_t pud_mkold(pud_t pud)
 
 static inline pud_t pud_mkclean(pud_t pud)
 {
-	return pud_clear_flags(pud, _PAGE_DIRTY);
+	return pud_clear_flags(pud, _PAGE_DIRTY_BITS);
 }
 
 static inline pud_t pud_wrprotect(pud_t pud)
 {
+	/*
+	 * Blindly clearing _PAGE_RW might accidentally create
+	 * a shadow stack PUD (RW=0, Dirty=1).  Move the hardware
+	 * dirty value to the software bit.
+	 */
+	if (cpu_feature_enabled(X86_FEATURE_SHSTK)) {
+		if (pud_flags(pud) & _PAGE_DIRTY) {
+			pud = pud_clear_flags(pud, _PAGE_DIRTY);
+			pud = pud_set_flags(pud, _PAGE_COW);
+		}
+	}
+
 	return pud_clear_flags(pud, _PAGE_RW);
 }
 
 static inline pud_t pud_mkdirty(pud_t pud)
 {
-	return pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
+	pudval_t dirty = _PAGE_DIRTY;
+
+	/* Avoid creating (HW)Dirty=1, Write=0 PUDs */
+	if (cpu_feature_enabled(X86_FEATURE_SHSTK) && !(pud_flags(pud) & _PAGE_RW))
+		dirty = _PAGE_COW;
+
+	return pud_set_flags(pud, dirty | _PAGE_SOFT_DIRTY);
 }
 
 static inline pud_t pud_mkdevmap(pud_t pud)
@@ -518,6 +605,13 @@ static inline pud_t pud_mkyoung(pud_t pud)
 
 static inline pud_t pud_mkwrite(pud_t pud)
 {
+	if (cpu_feature_enabled(X86_FEATURE_SHSTK)) {
+		if (pud_flags(pud) & _PAGE_COW) {
+			pud = pud_clear_flags(pud, _PAGE_COW);
+			pud = pud_set_flags(pud, _PAGE_DIRTY);
+		}
+	}
+
 	return pud_set_flags(pud, _PAGE_RW);
 }
 
@@ -1131,7 +1225,14 @@ extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
 #define pmd_write pmd_write
 static inline int pmd_write(pmd_t pmd)
 {
-	return pmd_flags(pmd) & _PAGE_RW;
+	/*
+	 * If _PAGE_DIRTY is set, then the PMD must either have _PAGE_RW or
+	 * be a shadow stack PMD, which is logically writable.
+	 */
+	if (cpu_feature_enabled(X86_FEATURE_SHSTK))
+		return pmd_flags(pmd) & (_PAGE_RW | _PAGE_DIRTY);
+	else
+		return pmd_flags(pmd) & _PAGE_RW;
 }
 
 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
diff --git a/arch/x86/include/asm/pgtable_types.h b/arch/x86/include/asm/pgtable_types.h
index b8b79d618bbc..437d7ff0ae80 100644
--- a/arch/x86/include/asm/pgtable_types.h
+++ b/arch/x86/include/asm/pgtable_types.h
@@ -23,7 +23,8 @@
 #define _PAGE_BIT_SOFTW2	10	/* " */
 #define _PAGE_BIT_SOFTW3	11	/* " */
 #define _PAGE_BIT_PAT_LARGE	12	/* On 2MB or 1GB pages */
-#define _PAGE_BIT_SOFTW4	58	/* available for programmer */
+#define _PAGE_BIT_SOFTW4	57	/* available for programmer */
+#define _PAGE_BIT_SOFTW5	58	/* available for programmer */
 #define _PAGE_BIT_PKEY_BIT0	59	/* Protection Keys, bit 1/4 */
 #define _PAGE_BIT_PKEY_BIT1	60	/* Protection Keys, bit 2/4 */
 #define _PAGE_BIT_PKEY_BIT2	61	/* Protection Keys, bit 3/4 */
@@ -36,6 +37,15 @@
 #define _PAGE_BIT_SOFT_DIRTY	_PAGE_BIT_SOFTW3 /* software dirty tracking */
 #define _PAGE_BIT_DEVMAP	_PAGE_BIT_SOFTW4
 
+/*
+ * Indicates a copy-on-write page.
+ */
+#ifdef CONFIG_X86_CET
+#define _PAGE_BIT_COW		_PAGE_BIT_SOFTW5 /* copy-on-write */
+#else
+#define _PAGE_BIT_COW		0
+#endif
+
 /* If _PAGE_BIT_PRESENT is clear, we use these: */
 /* - if the user mapped it with PROT_NONE; pte_present gives true */
 #define _PAGE_BIT_PROTNONE	_PAGE_BIT_GLOBAL
@@ -117,6 +127,36 @@
 #define _PAGE_DEVMAP	(_AT(pteval_t, 0))
 #endif
 
+/*
+ * The hardware requires shadow stack to be read-only and Dirty.
+ * _PAGE_COW is a software-only bit used to separate copy-on-write PTEs
+ * from shadow stack PTEs:
+ * (a) A modified, copy-on-write (COW) page: (Write=0, Cow=1)
+ * (b) A R/O page that has been COW'ed: (Write=0, Cow=1)
+ *     The user page is in a R/O VMA, and get_user_pages() needs a
+ *     writable copy.  The page fault handler creates a copy of the page
+ *     and sets the new copy's PTE as Write=0, Cow=1.
+ * (c) A shadow stack PTE: (Write=0, Dirty=1)
+ * (d) A shared (copy-on-access) shadow stack PTE: (Write=0, Cow=1)
+ *     When a shadow stack page is being shared among processes (this
+ *     happens at fork()), its PTE is cleared of _PAGE_DIRTY, so the next
+ *     shadow stack access causes a fault, and the page is duplicated and
+ *     _PAGE_DIRTY is set again.  This is the COW equivalent for shadow
+ *     stack pages, even though it's copy-on-access rather than
+ *     copy-on-write.
+ * (e) A page where the processor observed a Write=1 PTE, started a write,
+ *     set Dirty=1, but then observed a Write=0 PTE (changed by another
+ *     thread).  That's possible today, but will not happen on processors
+ *     that support shadow stack.
+ */
+#ifdef CONFIG_X86_CET
+#define _PAGE_COW	(_AT(pteval_t, 1) << _PAGE_BIT_COW)
+#else
+#define _PAGE_COW	(_AT(pteval_t, 0))
+#endif
+
+#define _PAGE_DIRTY_BITS (_PAGE_DIRTY | _PAGE_COW)
+
 #define _PAGE_PROTNONE	(_AT(pteval_t, 1) << _PAGE_BIT_PROTNONE)
 
 /*
-- 
2.21.0





[Index of Archives]     [Linux ARM Kernel]     [Linux ARM]     [Linux Omap]     [Fedora ARM]     [IETF Annouce]     [Bugtraq]     [Linux OMAP]     [Linux MIPS]     [eCos]     [Asterisk Internet PBX]     [Linux API]

  Powered by Linux