Re: [PATCH mm v10 41/42] kasan: add documentation for hardware tag-based mode

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On Fri, Nov 13, 2020 at 11:17 PM Andrey Konovalov <andreyknvl@xxxxxxxxxx> wrote:
>
> Add documentation for hardware tag-based KASAN mode and also add some
> clarifications for software tag-based mode.
>
> Signed-off-by: Andrey Konovalov <andreyknvl@xxxxxxxxxx>
> Signed-off-by: Vincenzo Frascino <vincenzo.frascino@xxxxxxx>
> Reviewed-by: Marco Elver <elver@xxxxxxxxxx>
Reviewed-by: Alexander Potapenko <glider@xxxxxxxxxx>

> ---
> Change-Id: Ib46cb444cfdee44054628940a82f5139e10d0258
> ---
>  Documentation/dev-tools/kasan.rst | 80 +++++++++++++++++++++++--------
>  1 file changed, 59 insertions(+), 21 deletions(-)
>
> diff --git a/Documentation/dev-tools/kasan.rst b/Documentation/dev-tools/kasan.rst
> index 2d55d788971c..ffbae8ce5748 100644
> --- a/Documentation/dev-tools/kasan.rst
> +++ b/Documentation/dev-tools/kasan.rst
> @@ -5,12 +5,14 @@ Overview
>  --------
>
>  KernelAddressSANitizer (KASAN) is a dynamic memory error detector designed to
> -find out-of-bound and use-after-free bugs. KASAN has two modes: generic KASAN
> -(similar to userspace ASan) and software tag-based KASAN (similar to userspace
> -HWASan).
> +find out-of-bound and use-after-free bugs. KASAN has three modes:
> +1. generic KASAN (similar to userspace ASan),
> +2. software tag-based KASAN (similar to userspace HWASan),
> +3. hardware tag-based KASAN (based on hardware memory tagging).
>
> -KASAN uses compile-time instrumentation to insert validity checks before every
> -memory access, and therefore requires a compiler version that supports that.
> +Software KASAN modes (1 and 2) use compile-time instrumentation to insert
> +validity checks before every memory access, and therefore require a compiler
> +version that supports that.
>
>  Generic KASAN is supported in both GCC and Clang. With GCC it requires version
>  8.3.0 or later. Any supported Clang version is compatible, but detection of
> @@ -19,7 +21,7 @@ out-of-bounds accesses for global variables is only supported since Clang 11.
>  Tag-based KASAN is only supported in Clang.
>
>  Currently generic KASAN is supported for the x86_64, arm, arm64, xtensa, s390
> -and riscv architectures, and tag-based KASAN is supported only for arm64.
> +and riscv architectures, and tag-based KASAN modes are supported only for arm64.
>
>  Usage
>  -----
> @@ -28,14 +30,16 @@ To enable KASAN configure kernel with::
>
>           CONFIG_KASAN = y
>
> -and choose between CONFIG_KASAN_GENERIC (to enable generic KASAN) and
> -CONFIG_KASAN_SW_TAGS (to enable software tag-based KASAN).
> +and choose between CONFIG_KASAN_GENERIC (to enable generic KASAN),
> +CONFIG_KASAN_SW_TAGS (to enable software tag-based KASAN), and
> +CONFIG_KASAN_HW_TAGS (to enable hardware tag-based KASAN).
>
> -You also need to choose between CONFIG_KASAN_OUTLINE and CONFIG_KASAN_INLINE.
> -Outline and inline are compiler instrumentation types. The former produces
> -smaller binary while the latter is 1.1 - 2 times faster.
> +For software modes, you also need to choose between CONFIG_KASAN_OUTLINE and
> +CONFIG_KASAN_INLINE. Outline and inline are compiler instrumentation types.
> +The former produces smaller binary while the latter is 1.1 - 2 times faster.
>
> -Both KASAN modes work with both SLUB and SLAB memory allocators.
> +Both software KASAN modes work with both SLUB and SLAB memory allocators,
> +hardware tag-based KASAN currently only support SLUB.
>  For better bug detection and nicer reporting, enable CONFIG_STACKTRACE.
>
>  To augment reports with last allocation and freeing stack of the physical page,
> @@ -196,17 +200,24 @@ and the second to last.
>  Software tag-based KASAN
>  ~~~~~~~~~~~~~~~~~~~~~~~~
>
> -Tag-based KASAN uses the Top Byte Ignore (TBI) feature of modern arm64 CPUs to
> -store a pointer tag in the top byte of kernel pointers. Like generic KASAN it
> -uses shadow memory to store memory tags associated with each 16-byte memory
> +Software tag-based KASAN requires software memory tagging support in the form
> +of HWASan-like compiler instrumentation (see HWASan documentation for details).
> +
> +Software tag-based KASAN is currently only implemented for arm64 architecture.
> +
> +Software tag-based KASAN uses the Top Byte Ignore (TBI) feature of arm64 CPUs
> +to store a pointer tag in the top byte of kernel pointers. Like generic KASAN
> +it uses shadow memory to store memory tags associated with each 16-byte memory
>  cell (therefore it dedicates 1/16th of the kernel memory for shadow memory).
>
> -On each memory allocation tag-based KASAN generates a random tag, tags the
> -allocated memory with this tag, and embeds this tag into the returned pointer.
> +On each memory allocation software tag-based KASAN generates a random tag, tags
> +the allocated memory with this tag, and embeds this tag into the returned
> +pointer.
> +
>  Software tag-based KASAN uses compile-time instrumentation to insert checks
>  before each memory access. These checks make sure that tag of the memory that
>  is being accessed is equal to tag of the pointer that is used to access this
> -memory. In case of a tag mismatch tag-based KASAN prints a bug report.
> +memory. In case of a tag mismatch software tag-based KASAN prints a bug report.
>
>  Software tag-based KASAN also has two instrumentation modes (outline, that
>  emits callbacks to check memory accesses; and inline, that performs the shadow
> @@ -215,9 +226,36 @@ simply printed from the function that performs the access check. With inline
>  instrumentation a brk instruction is emitted by the compiler, and a dedicated
>  brk handler is used to print bug reports.
>
> -A potential expansion of this mode is a hardware tag-based mode, which would
> -use hardware memory tagging support instead of compiler instrumentation and
> -manual shadow memory manipulation.
> +Software tag-based KASAN uses 0xFF as a match-all pointer tag (accesses through
> +pointers with 0xFF pointer tag aren't checked). The value 0xFE is currently
> +reserved to tag freed memory regions.
> +
> +Software tag-based KASAN currently only supports tagging of
> +kmem_cache_alloc/kmalloc and page_alloc memory.
> +
> +Hardware tag-based KASAN
> +~~~~~~~~~~~~~~~~~~~~~~~~
> +
> +Hardware tag-based KASAN is similar to the software mode in concept, but uses
> +hardware memory tagging support instead of compiler instrumentation and
> +shadow memory.
> +
> +Hardware tag-based KASAN is currently only implemented for arm64 architecture
> +and based on both arm64 Memory Tagging Extension (MTE) introduced in ARMv8.5
> +Instruction Set Architecture, and Top Byte Ignore (TBI).
> +
> +Special arm64 instructions are used to assign memory tags for each allocation.
> +Same tags are assigned to pointers to those allocations. On every memory
> +access, hardware makes sure that tag of the memory that is being accessed is
> +equal to tag of the pointer that is used to access this memory. In case of a
> +tag mismatch a fault is generated and a report is printed.
> +
> +Hardware tag-based KASAN uses 0xFF as a match-all pointer tag (accesses through
> +pointers with 0xFF pointer tag aren't checked). The value 0xFE is currently
> +reserved to tag freed memory regions.
> +
> +Hardware tag-based KASAN currently only supports tagging of
> +kmem_cache_alloc/kmalloc and page_alloc memory.
>
>  What memory accesses are sanitised by KASAN?
>  --------------------------------------------
> --
> 2.29.2.299.gdc1121823c-goog
>


-- 
Alexander Potapenko
Software Engineer

Google Germany GmbH
Erika-Mann-Straße, 33
80636 München

Geschäftsführer: Paul Manicle, Halimah DeLaine Prado
Registergericht und -nummer: Hamburg, HRB 86891
Sitz der Gesellschaft: Hamburg





[Index of Archives]     [Linux ARM Kernel]     [Linux ARM]     [Linux Omap]     [Fedora ARM]     [IETF Annouce]     [Bugtraq]     [Linux OMAP]     [Linux MIPS]     [eCos]     [Asterisk Internet PBX]     [Linux API]

  Powered by Linux