System: Oracle X6-2 CPU: 2 nodes * 10 cores/node * 2 threads/core Intel Xeon E5-2630 v4 (Broadwellx, 6:79:1) Memory: 256 GB evenly split between nodes Microcode: 0xb00002e scaling_governor: performance L3 size: 25MB intel_pstate/no_turbo: 1 Performance comparison of 'perf bench mem memset -l 1' for x86-64-stosb (X86_FEATURE_ERMS) and x86-64-movnt (X86_FEATURE_NT_GOOD): x86-64-stosb (5 runs) x86-64-movnt (5 runs) speedup ----------------------- ----------------------- ------- size BW ( pstdev) BW ( pstdev) 16MB 17.35 GB/s ( +- 9.27%) 11.83 GB/s ( +- 0.19%) -31.81% 128MB 5.31 GB/s ( +- 0.13%) 11.72 GB/s ( +- 0.44%) +121.84% 1024MB 5.42 GB/s ( +- 0.13%) 11.78 GB/s ( +- 0.03%) +117.34% 4096MB 5.41 GB/s ( +- 0.41%) 11.76 GB/s ( +- 0.07%) +117.37% The next workload exercises the page-clearing path directly by faulting over an anonymous mmap region backed by 1GB pages. This workload is similar to the creation phase of pinned guests in QEMU. $ cat pf-test.c #include <stdlib.h> #include <sys/mman.h> #include <linux/mman.h> #define HPAGE_BITS 30 int main(int argc, char **argv) { int i; unsigned long len = atoi(argv[1]); /* In GB */ unsigned long offset = 0; unsigned long numpages; char *base; len *= 1UL << 30; numpages = len >> HPAGE_BITS; base = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB | MAP_HUGE_1GB, 0, 0); for (i = 0; i < numpages; i++) { *((volatile char *)base + offset) = *(base + offset); offset += 1UL << HPAGE_BITS; } return 0; } The specific test is for a 128GB region but this is a single-threaded O(n) workload so the exact region size is not material. Page-clearing throughput for clear_page_erms(): 3.72 GBps $ perf stat -r 5 --all-kernel -e ... bin/pf-test 128 Performance counter stats for 'bin/pf-test 128' (5 runs): 74,799,496,556 cpu-cycles # 2.176 GHz ( +- 2.22% ) (29.41%) 1,474,615,023 instructions # 0.02 insn per cycle ( +- 0.23% ) (35.29%) 2,148,580,131 cache-references # 62.502 M/sec ( +- 0.02% ) (35.29%) 71,736,985 cache-misses # 3.339 % of all cache refs ( +- 0.94% ) (35.29%) 433,713,165 branch-instructions # 12.617 M/sec ( +- 0.15% ) (35.30%) 1,008,251 branch-misses # 0.23% of all branches ( +- 1.88% ) (35.30%) 3,406,821,966 bus-cycles # 99.104 M/sec ( +- 2.22% ) (23.53%) 2,156,059,110 L1-dcache-load-misses # 445.35% of all L1-dcache accesses ( +- 0.01% ) (23.53%) 484,128,243 L1-dcache-loads # 14.083 M/sec ( +- 0.22% ) (23.53%) 944,216 LLC-loads # 0.027 M/sec ( +- 7.41% ) (23.53%) 537,989 LLC-load-misses # 56.98% of all LL-cache accesses ( +- 13.64% ) (23.53%) 2,150,138,476 LLC-stores # 62.547 M/sec ( +- 0.01% ) (11.76%) 69,598,760 LLC-store-misses # 2.025 M/sec ( +- 0.47% ) (11.76%) 483,923,875 dTLB-loads # 14.077 M/sec ( +- 0.21% ) (17.64%) 1,892 dTLB-load-misses # 0.00% of all dTLB cache accesses ( +- 30.63% ) (23.53%) 4,799,154,980 dTLB-stores # 139.606 M/sec ( +- 0.03% ) (23.53%) 90 dTLB-store-misses # 0.003 K/sec ( +- 35.92% ) (23.53%) 34.377 +- 0.760 seconds time elapsed ( +- 2.21% ) Page-clearing throughput with clear_page_nt(): 11.78GBps $ perf stat -r 5 --all-kernel -e ... bin/pf-test 128 Performance counter stats for 'bin/pf-test 128' (5 runs): 23,699,446,603 cpu-cycles # 2.182 GHz ( +- 0.01% ) (23.53%) 24,794,548,512 instructions # 1.05 insn per cycle ( +- 0.00% ) (29.41%) 432,775 cache-references # 0.040 M/sec ( +- 3.96% ) (29.41%) 75,580 cache-misses # 17.464 % of all cache refs ( +- 51.42% ) (29.41%) 2,492,858,290 branch-instructions # 229.475 M/sec ( +- 0.00% ) (29.42%) 34,016,826 branch-misses # 1.36% of all branches ( +- 0.04% ) (29.42%) 1,078,468,643 bus-cycles # 99.276 M/sec ( +- 0.01% ) (23.53%) 717,228 L1-dcache-load-misses # 0.20% of all L1-dcache accesses ( +- 3.77% ) (23.53%) 351,999,535 L1-dcache-loads # 32.403 M/sec ( +- 0.04% ) (23.53%) 75,988 LLC-loads # 0.007 M/sec ( +- 4.20% ) (23.53%) 24,503 LLC-load-misses # 32.25% of all LL-cache accesses ( +- 53.30% ) (23.53%) 57,283 LLC-stores # 0.005 M/sec ( +- 2.15% ) (11.76%) 19,738 LLC-store-misses # 0.002 M/sec ( +- 46.55% ) (11.76%) 351,836,498 dTLB-loads # 32.388 M/sec ( +- 0.04% ) (17.65%) 1,171 dTLB-load-misses # 0.00% of all dTLB cache accesses ( +- 42.68% ) (23.53%) 17,385,579,725 dTLB-stores # 1600.392 M/sec ( +- 0.00% ) (23.53%) 200 dTLB-store-misses # 0.018 K/sec ( +- 10.63% ) (23.53%) 10.863678 +- 0.000804 seconds time elapsed ( +- 0.01% ) L1-dcache-load-misses (L1D.REPLACEMENT) is substantially lower which suggests that, as expected, we aren't doing write-allocate or RFO. Note that the IPC and instruction counts etc are quite different, but that's just an artifact of switching from a single 'REP; STOSB' per PAGE_SIZE region to a MOVNTI loop. The page-clearing BW is substantially higher (~100% or more), so enable X86_FEATURE_NT_GOOD for Intel Broadwellx. Signed-off-by: Ankur Arora <ankur.a.arora@xxxxxxxxxx> --- arch/x86/kernel/cpu/intel.c | 2 ++ 1 file changed, 2 insertions(+) diff --git a/arch/x86/kernel/cpu/intel.c b/arch/x86/kernel/cpu/intel.c index 59a1e3ce3f14..161028c1dee0 100644 --- a/arch/x86/kernel/cpu/intel.c +++ b/arch/x86/kernel/cpu/intel.c @@ -662,6 +662,8 @@ static void init_intel(struct cpuinfo_x86 *c) c->x86_cache_alignment = c->x86_clflush_size * 2; if (c->x86 == 6) set_cpu_cap(c, X86_FEATURE_REP_GOOD); + if (c->x86 == 6 && c->x86_model == INTEL_FAM6_BROADWELL_X) + set_cpu_cap(c, X86_FEATURE_NT_GOOD); #else /* * Names for the Pentium II/Celeron processors -- 2.9.3