This reverts 87bf91d39bb52b688fb411d668fbe7df278b29ae Commit 87bf91d39bb5 depends on i_mmap_rwsem being taken during hugetlb fault processing. Commit c0d0381ade79 added code to take i_mmap_rwsem in read mode during fault processing. However, this was observed to increase fault processing time by aprox 33%. To address this, i_mmap_rwsem will only be taken during fault processing when necessary. As a result, i_mmap_rwsem can not be used to synchronize fault and truncate. In a subsequent commit, code will be added to detect the race and back out operations. Reported-by: kernel test robot <rong.a.chen@xxxxxxxxx> Signed-off-by: Mike Kravetz <mike.kravetz@xxxxxxxxxx> --- fs/hugetlbfs/inode.c | 28 ++++++++-------------------- mm/hugetlb.c | 23 ++++++++++++----------- 2 files changed, 20 insertions(+), 31 deletions(-) diff --git a/fs/hugetlbfs/inode.c b/fs/hugetlbfs/inode.c index ef5313f9c78f..b4bb82815dd4 100644 --- a/fs/hugetlbfs/inode.c +++ b/fs/hugetlbfs/inode.c @@ -444,9 +444,10 @@ hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end) * In this case, we first scan the range and release found pages. * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv * maps and global counts. Page faults can not race with truncation - * in this routine. hugetlb_no_page() holds i_mmap_rwsem and prevents - * page faults in the truncated range by checking i_size. i_size is - * modified while holding i_mmap_rwsem. + * in this routine. hugetlb_no_page() prevents page faults in the + * truncated range. It checks i_size before allocation, and again after + * with the page table lock for the page held. The same lock must be + * acquired to unmap a page. * hole punch is indicated if end is not LLONG_MAX * In the hole punch case we scan the range and release found pages. * Only when releasing a page is the associated region/reserv map @@ -486,15 +487,7 @@ static void remove_inode_hugepages(struct inode *inode, loff_t lstart, index = page->index; hash = hugetlb_fault_mutex_hash(mapping, index); - if (!truncate_op) { - /* - * Only need to hold the fault mutex in the - * hole punch case. This prevents races with - * page faults. Races are not possible in the - * case of truncation. - */ - mutex_lock(&hugetlb_fault_mutex_table[hash]); - } + mutex_lock(&hugetlb_fault_mutex_table[hash]); /* * If page is mapped, it was faulted in after being @@ -537,8 +530,7 @@ static void remove_inode_hugepages(struct inode *inode, loff_t lstart, } unlock_page(page); - if (!truncate_op) - mutex_unlock(&hugetlb_fault_mutex_table[hash]); + mutex_unlock(&hugetlb_fault_mutex_table[hash]); } huge_pagevec_release(&pvec); cond_resched(); @@ -576,8 +568,8 @@ static int hugetlb_vmtruncate(struct inode *inode, loff_t offset) BUG_ON(offset & ~huge_page_mask(h)); pgoff = offset >> PAGE_SHIFT; - i_mmap_lock_write(mapping); i_size_write(inode, offset); + i_mmap_lock_write(mapping); if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0); i_mmap_unlock_write(mapping); @@ -699,11 +691,7 @@ static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, /* addr is the offset within the file (zero based) */ addr = index * hpage_size; - /* - * fault mutex taken here, protects against fault path - * and hole punch. inode_lock previously taken protects - * against truncation. - */ + /* mutex taken here, fault path and hole punch */ hash = hugetlb_fault_mutex_hash(mapping, index); mutex_lock(&hugetlb_fault_mutex_table[hash]); diff --git a/mm/hugetlb.c b/mm/hugetlb.c index 57ece74e3aae..5349beda3658 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c @@ -4322,17 +4322,16 @@ static vm_fault_t hugetlb_no_page(struct mm_struct *mm, } /* - * We can not race with truncation due to holding i_mmap_rwsem. - * i_size is modified when holding i_mmap_rwsem, so check here - * once for faults beyond end of file. + * Use page lock to guard against racing truncation + * before we get page_table_lock. */ - size = i_size_read(mapping->host) >> huge_page_shift(h); - if (idx >= size) - goto out; - retry: page = find_lock_page(mapping, idx); if (!page) { + size = i_size_read(mapping->host) >> huge_page_shift(h); + if (idx >= size) + goto out; + /* * Check for page in userfault range */ @@ -4438,6 +4437,10 @@ static vm_fault_t hugetlb_no_page(struct mm_struct *mm, } ptl = huge_pte_lock(h, mm, ptep); + size = i_size_read(mapping->host) >> huge_page_shift(h); + if (idx >= size) + goto backout; + ret = 0; if (!huge_pte_none(huge_ptep_get(ptep))) goto backout; @@ -4541,10 +4544,8 @@ vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, /* * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold - * until finished with ptep. This serves two purposes: - * 1) It prevents huge_pmd_unshare from being called elsewhere - * and making the ptep no longer valid. - * 2) It synchronizes us with i_size modifications during truncation. + * until finished with ptep. This prevents huge_pmd_unshare from + * being called elsewhere and making the ptep no longer valid. * * ptep could have already be assigned via huge_pte_offset. That * is OK, as huge_pte_alloc will return the same value unless -- 2.25.4