On 06/23/2020 10:26 AM, Nathan Chancellor wrote: > On Tue, Jun 16, 2020 at 01:45:27PM -0700, Nitin Gupta wrote: >> For some applications, we need to allocate almost all memory as >> hugepages. However, on a running system, higher-order allocations can >> fail if the memory is fragmented. Linux kernel currently does on-demand >> compaction as we request more hugepages, but this style of compaction >> incurs very high latency. Experiments with one-time full memory >> compaction (followed by hugepage allocations) show that kernel is able >> to restore a highly fragmented memory state to a fairly compacted memory >> state within <1 sec for a 32G system. Such data suggests that a more >> proactive compaction can help us allocate a large fraction of memory as >> hugepages keeping allocation latencies low. >> >> For a more proactive compaction, the approach taken here is to define a >> new sysctl called 'vm.compaction_proactiveness' which dictates bounds >> for external fragmentation which kcompactd tries to maintain. >> >> The tunable takes a value in range [0, 100], with a default of 20. >> >> Note that a previous version of this patch [1] was found to introduce >> too many tunables (per-order extfrag{low, high}), but this one reduces >> them to just one sysctl. Also, the new tunable is an opaque value >> instead of asking for specific bounds of "external fragmentation", which >> would have been difficult to estimate. The internal interpretation of >> this opaque value allows for future fine-tuning. >> >> Currently, we use a simple translation from this tunable to [low, high] >> "fragmentation score" thresholds (low=100-proactiveness, high=low+10%). >> The score for a node is defined as weighted mean of per-zone external >> fragmentation. A zone's present_pages determines its weight. >> >> To periodically check per-node score, we reuse per-node kcompactd >> threads, which are woken up every 500 milliseconds to check the same. If >> a node's score exceeds its high threshold (as derived from user-provided >> proactiveness value), proactive compaction is started until its score >> reaches its low threshold value. By default, proactiveness is set to 20, >> which implies threshold values of low=80 and high=90. >> >> This patch is largely based on ideas from Michal Hocko [2]. See also the >> LWN article [3]. >> >> Performance data >> ================ >> >> System: x64_64, 1T RAM, 80 CPU threads. >> Kernel: 5.6.0-rc3 + this patch >> >> echo madvise | sudo tee /sys/kernel/mm/transparent_hugepage/enabled >> echo madvise | sudo tee /sys/kernel/mm/transparent_hugepage/defrag >> >> Before starting the driver, the system was fragmented from a userspace >> program that allocates all memory and then for each 2M aligned section, >> frees 3/4 of base pages using munmap. The workload is mainly anonymous >> userspace pages, which are easy to move around. I intentionally avoided >> unmovable pages in this test to see how much latency we incur when >> hugepage allocations hit direct compaction. >> >> 1. Kernel hugepage allocation latencies >> >> With the system in such a fragmented state, a kernel driver then >> allocates as many hugepages as possible and measures allocation >> latency: >> >> (all latency values are in microseconds) >> >> - With vanilla 5.6.0-rc3 >> >> percentile latency >> –––––––––– ––––––– >> 5 7894 >> 10 9496 >> 25 12561 >> 30 15295 >> 40 18244 >> 50 21229 >> 60 27556 >> 75 30147 >> 80 31047 >> 90 32859 >> 95 33799 >> >> Total 2M hugepages allocated = 383859 (749G worth of hugepages out of >> 762G total free => 98% of free memory could be allocated as hugepages) >> >> - With 5.6.0-rc3 + this patch, with proactiveness=20 >> >> sysctl -w vm.compaction_proactiveness=20 >> >> percentile latency >> –––––––––– ––––––– >> 5 2 >> 10 2 >> 25 3 >> 30 3 >> 40 3 >> 50 4 >> 60 4 >> 75 4 >> 80 4 >> 90 5 >> 95 429 >> >> Total 2M hugepages allocated = 384105 (750G worth of hugepages out of >> 762G total free => 98% of free memory could be allocated as hugepages) >> >> 2. JAVA heap allocation >> >> In this test, we first fragment memory using the same method as for (1). >> >> Then, we start a Java process with a heap size set to 700G and request >> the heap to be allocated with THP hugepages. We also set THP to madvise >> to allow hugepage backing of this heap. >> >> /usr/bin/time >> java -Xms700G -Xmx700G -XX:+UseTransparentHugePages -XX:+AlwaysPreTouch >> >> The above command allocates 700G of Java heap using hugepages. >> >> - With vanilla 5.6.0-rc3 >> >> 17.39user 1666.48system 27:37.89elapsed >> >> - With 5.6.0-rc3 + this patch, with proactiveness=20 >> >> 8.35user 194.58system 3:19.62elapsed >> >> Elapsed time remains around 3:15, as proactiveness is further increased. >> >> Note that proactive compaction happens throughout the runtime of these >> workloads. The situation of one-time compaction, sufficient to supply >> hugepages for following allocation stream, can probably happen for more >> extreme proactiveness values, like 80 or 90. >> >> In the above Java workload, proactiveness is set to 20. The test starts >> with a node's score of 80 or higher, depending on the delay between the >> fragmentation step and starting the benchmark, which gives more-or-less >> time for the initial round of compaction. As t he benchmark consumes >> hugepages, node's score quickly rises above the high threshold (90) and >> proactive compaction starts again, which brings down the score to the >> low threshold level (80). Repeat. >> >> bpftrace also confirms proactive compaction running 20+ times during the >> runtime of this Java benchmark. kcompactd threads consume 100% of one of >> the CPUs while it tries to bring a node's score within thresholds. >> >> Backoff behavior >> ================ >> >> Above workloads produce a memory state which is easy to compact. >> However, if memory is filled with unmovable pages, proactive compaction >> should essentially back off. To test this aspect: >> >> - Created a kernel driver that allocates almost all memory as hugepages >> followed by freeing first 3/4 of each hugepage. >> - Set proactiveness=40 >> - Note that proactive_compact_node() is deferred maximum number of times >> with HPAGE_FRAG_CHECK_INTERVAL_MSEC of wait between each check >> (=> ~30 seconds between retries). >> >> [1] https://patchwork.kernel.org/patch/11098289/ >> [2] https://lore.kernel.org/linux-mm/20161230131412.GI13301@xxxxxxxxxxxxxx/ >> [3] https://lwn.net/Articles/817905/ >> >> Signed-off-by: Nitin Gupta <nigupta@xxxxxxxxxx> >> Reviewed-by: Vlastimil Babka <vbabka@xxxxxxx> >> Reviewed-by: Khalid Aziz <khalid.aziz@xxxxxxxxxx> >> Reviewed-by: Oleksandr Natalenko <oleksandr@xxxxxxxxxx> >> Tested-by: Oleksandr Natalenko <oleksandr@xxxxxxxxxx> >> To: Andrew Morton <akpm@xxxxxxxxxxxxxxxxxxxx> >> CC: Vlastimil Babka <vbabka@xxxxxxx> >> CC: Khalid Aziz <khalid.aziz@xxxxxxxxxx> >> CC: Michal Hocko <mhocko@xxxxxxxx> >> CC: Mel Gorman <mgorman@xxxxxxxxxxxxxxxxxxx> >> CC: Matthew Wilcox <willy@xxxxxxxxxxxxx> >> CC: Mike Kravetz <mike.kravetz@xxxxxxxxxx> >> CC: Joonsoo Kim <iamjoonsoo.kim@xxxxxxx> >> CC: David Rientjes <rientjes@xxxxxxxxxx> >> CC: Nitin Gupta <ngupta@xxxxxxxxxxxxxx> >> CC: Oleksandr Natalenko <oleksandr@xxxxxxxxxx> >> CC: linux-kernel <linux-kernel@xxxxxxxxxxxxxxx> >> CC: linux-mm <linux-mm@xxxxxxxxx> >> CC: Linux API <linux-api@xxxxxxxxxxxxxxx> > > This is now in -next and causes the following build failure: > > $ make -skj"$(nproc)" ARCH=mips CROSS_COMPILE=mipsel-linux- O=out/mipsel distclean malta_kvm_guest_defconfig mm/compaction.o > In file included from include/linux/dev_printk.h:14, > from include/linux/device.h:15, > from include/linux/node.h:18, > from include/linux/cpu.h:17, > from mm/compaction.c:11: > In function 'fragmentation_score_zone', > inlined from '__compact_finished' at mm/compaction.c:1982:11, > inlined from 'compact_zone' at mm/compaction.c:2062:8: > include/linux/compiler.h:339:38: error: call to '__compiletime_assert_301' declared with attribute error: BUILD_BUG failed > 339 | _compiletime_assert(condition, msg, __compiletime_assert_, __COUNTER__) > | ^ > include/linux/compiler.h:320:4: note: in definition of macro '__compiletime_assert' > 320 | prefix ## suffix(); \ > | ^~~~~~ > include/linux/compiler.h:339:2: note: in expansion of macro '_compiletime_assert' > 339 | _compiletime_assert(condition, msg, __compiletime_assert_, __COUNTER__) > | ^~~~~~~~~~~~~~~~~~~ > include/linux/build_bug.h:39:37: note: in expansion of macro 'compiletime_assert' > 39 | #define BUILD_BUG_ON_MSG(cond, msg) compiletime_assert(!(cond), msg) > | ^~~~~~~~~~~~~~~~~~ > include/linux/build_bug.h:59:21: note: in expansion of macro 'BUILD_BUG_ON_MSG' > 59 | #define BUILD_BUG() BUILD_BUG_ON_MSG(1, "BUILD_BUG failed") > | ^~~~~~~~~~~~~~~~ > arch/mips/include/asm/page.h:70:30: note: in expansion of macro 'BUILD_BUG' > 70 | #define HUGETLB_PAGE_ORDER ({BUILD_BUG(); 0; }) > | ^~~~~~~~~ > mm/compaction.c:66:32: note: in expansion of macro 'HUGETLB_PAGE_ORDER' > 66 | #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER > | ^~~~~~~~~~~~~~~~~~ > mm/compaction.c:1898:28: note: in expansion of macro 'COMPACTION_HPAGE_ORDER' > 1898 | extfrag_for_order(zone, COMPACTION_HPAGE_ORDER); > | ^~~~~~~~~~~~~~~~~~~~~~ > In function 'fragmentation_score_zone', > inlined from 'kcompactd' at mm/compaction.c:1918:12: > include/linux/compiler.h:339:38: error: call to '__compiletime_assert_301' declared with attribute error: BUILD_BUG failed > 339 | _compiletime_assert(condition, msg, __compiletime_assert_, __COUNTER__) > | ^ > include/linux/compiler.h:320:4: note: in definition of macro '__compiletime_assert' > 320 | prefix ## suffix(); \ > | ^~~~~~ > include/linux/compiler.h:339:2: note: in expansion of macro '_compiletime_assert' > 339 | _compiletime_assert(condition, msg, __compiletime_assert_, __COUNTER__) > | ^~~~~~~~~~~~~~~~~~~ > include/linux/build_bug.h:39:37: note: in expansion of macro 'compiletime_assert' > 39 | #define BUILD_BUG_ON_MSG(cond, msg) compiletime_assert(!(cond), msg) > | ^~~~~~~~~~~~~~~~~~ > include/linux/build_bug.h:59:21: note: in expansion of macro 'BUILD_BUG_ON_MSG' > 59 | #define BUILD_BUG() BUILD_BUG_ON_MSG(1, "BUILD_BUG failed") > | ^~~~~~~~~~~~~~~~ > arch/mips/include/asm/page.h:70:30: note: in expansion of macro 'BUILD_BUG' > 70 | #define HUGETLB_PAGE_ORDER ({BUILD_BUG(); 0; }) > | ^~~~~~~~~ > mm/compaction.c:66:32: note: in expansion of macro 'HUGETLB_PAGE_ORDER' > 66 | #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER > | ^~~~~~~~~~~~~~~~~~ > mm/compaction.c:1898:28: note: in expansion of macro 'COMPACTION_HPAGE_ORDER' > 1898 | extfrag_for_order(zone, COMPACTION_HPAGE_ORDER); > | ^~~~~~~~~~~~~~~~~~~~~~ > In function 'fragmentation_score_zone', > inlined from 'kcompactd' at mm/compaction.c:1918:12: > include/linux/compiler.h:339:38: error: call to '__compiletime_assert_301' declared with attribute error: BUILD_BUG failed > 339 | _compiletime_assert(condition, msg, __compiletime_assert_, __COUNTER__) > | ^ > include/linux/compiler.h:320:4: note: in definition of macro '__compiletime_assert' > 320 | prefix ## suffix(); \ > | ^~~~~~ > include/linux/compiler.h:339:2: note: in expansion of macro '_compiletime_assert' > 339 | _compiletime_assert(condition, msg, __compiletime_assert_, __COUNTER__) > | ^~~~~~~~~~~~~~~~~~~ > include/linux/build_bug.h:39:37: note: in expansion of macro 'compiletime_assert' > 39 | #define BUILD_BUG_ON_MSG(cond, msg) compiletime_assert(!(cond), msg) > | ^~~~~~~~~~~~~~~~~~ > include/linux/build_bug.h:59:21: note: in expansion of macro 'BUILD_BUG_ON_MSG' > 59 | #define BUILD_BUG() BUILD_BUG_ON_MSG(1, "BUILD_BUG failed") > | ^~~~~~~~~~~~~~~~ > arch/mips/include/asm/page.h:70:30: note: in expansion of macro 'BUILD_BUG' > 70 | #define HUGETLB_PAGE_ORDER ({BUILD_BUG(); 0; }) > | ^~~~~~~~~ > mm/compaction.c:66:32: note: in expansion of macro 'HUGETLB_PAGE_ORDER' > 66 | #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER > | ^~~~~~~~~~~~~~~~~~ > mm/compaction.c:1898:28: note: in expansion of macro 'COMPACTION_HPAGE_ORDER' > 1898 | extfrag_for_order(zone, COMPACTION_HPAGE_ORDER); > | ^~~~~~~~~~~~~~~~~~~~~~ > In function 'fragmentation_score_zone', > inlined from 'kcompactd' at mm/compaction.c:1918:12: > include/linux/compiler.h:339:38: error: call to '__compiletime_assert_301' declared with attribute error: BUILD_BUG failed > 339 | _compiletime_assert(condition, msg, __compiletime_assert_, __COUNTER__) > | ^ > include/linux/compiler.h:320:4: note: in definition of macro '__compiletime_assert' > 320 | prefix ## suffix(); \ > | ^~~~~~ > include/linux/compiler.h:339:2: note: in expansion of macro '_compiletime_assert' > 339 | _compiletime_assert(condition, msg, __compiletime_assert_, __COUNTER__) > | ^~~~~~~~~~~~~~~~~~~ > include/linux/build_bug.h:39:37: note: in expansion of macro 'compiletime_assert' > 39 | #define BUILD_BUG_ON_MSG(cond, msg) compiletime_assert(!(cond), msg) > | ^~~~~~~~~~~~~~~~~~ > include/linux/build_bug.h:59:21: note: in expansion of macro 'BUILD_BUG_ON_MSG' > 59 | #define BUILD_BUG() BUILD_BUG_ON_MSG(1, "BUILD_BUG failed") > | ^~~~~~~~~~~~~~~~ > arch/mips/include/asm/page.h:70:30: note: in expansion of macro 'BUILD_BUG' > 70 | #define HUGETLB_PAGE_ORDER ({BUILD_BUG(); 0; }) > | ^~~~~~~~~ > mm/compaction.c:66:32: note: in expansion of macro 'HUGETLB_PAGE_ORDER' > 66 | #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER > | ^~~~~~~~~~~~~~~~~~ > mm/compaction.c:1898:28: note: in expansion of macro 'COMPACTION_HPAGE_ORDER' > 1898 | extfrag_for_order(zone, COMPACTION_HPAGE_ORDER); > | ^~~~~~~~~~~~~~~~~~~~~~ > make[3]: *** [scripts/Makefile.build:281: mm/compaction.o] Error 1 > make[3]: Target '__build' not remade because of errors. > make[2]: *** [Makefile:1765: mm] Error 2 > make[2]: Target 'mm/compaction.o' not remade because of errors. > make[1]: *** [Makefile:336: __build_one_by_one] Error 2 > make[1]: Target 'distclean' not remade because of errors. > make[1]: Target 'malta_kvm_guest_defconfig' not remade because of errors. > make[1]: Target 'mm/compaction.o' not remade because of errors. > make: *** [Makefile:185: __sub-make] Error 2 > make: Target 'distclean' not remade because of errors. > make: Target 'malta_kvm_guest_defconfig' not remade because of errors. > make: Target 'mm/compaction.o' not remade because of errors. > > I am not sure why MIPS is special with its handling of hugepage support > but I am far from a MIPS expert :) it seems that both HUGETLB_PAGE and TRANSPARENT_HUGEPAGE are disabled with malta_kvm_guest_defconfig. > > Cheers, > Nathan >