The following lockdep splat was reported: [ 176.241923] ====================================================== [ 176.241924] WARNING: possible circular locking dependency detected [ 176.241926] 4.18.0-172.rt13.29.el8.x86_64+debug #1 Not tainted [ 176.241927] ------------------------------------------------------ [ 176.241929] slub_cpu_partia/5371 is trying to acquire lock: [ 176.241930] ffffffffa0b83718 (slab_mutex){+.+.}, at: slab_attr_store+0x6b/0xe0 [ 176.241941] but task is already holding lock: [ 176.241942] ffff88bb6d8b83c8 (kn->count#103){++++}, at: kernfs_fop_write+0x1cc/0x400 [ 176.241947] which lock already depends on the new lock. [ 176.241949] the existing dependency chain (in reverse order) is: [ 176.241949] -> #1 (kn->count#103){++++}: [ 176.241955] __kernfs_remove+0x616/0x800 [ 176.241957] kernfs_remove_by_name_ns+0x3e/0x80 [ 176.241959] sysfs_slab_add+0x1c6/0x330 [ 176.241961] __kmem_cache_create+0x15f/0x1b0 [ 176.241964] create_cache+0xe1/0x220 [ 176.241966] kmem_cache_create_usercopy+0x1a3/0x260 [ 176.241967] kmem_cache_create+0x12/0x20 [ 176.242076] mlx5_init_fs+0x18d/0x1a00 [mlx5_core] [ 176.242100] mlx5_load_one+0x3b4/0x1730 [mlx5_core] [ 176.242124] init_one+0x901/0x11b0 [mlx5_core] [ 176.242127] local_pci_probe+0xd4/0x180 [ 176.242131] work_for_cpu_fn+0x51/0xa0 [ 176.242133] process_one_work+0x91a/0x1ac0 [ 176.242134] worker_thread+0x536/0xb40 [ 176.242136] kthread+0x30c/0x3d0 [ 176.242140] ret_from_fork+0x27/0x50 [ 176.242140] -> #0 (slab_mutex){+.+.}: [ 176.242145] __lock_acquire+0x22cb/0x48c0 [ 176.242146] lock_acquire+0x134/0x4c0 [ 176.242148] _mutex_lock+0x28/0x40 [ 176.242150] slab_attr_store+0x6b/0xe0 [ 176.242151] kernfs_fop_write+0x251/0x400 [ 176.242154] vfs_write+0x157/0x460 [ 176.242155] ksys_write+0xb8/0x170 [ 176.242158] do_syscall_64+0x13c/0x710 [ 176.242160] entry_SYSCALL_64_after_hwframe+0x6a/0xdf [ 176.242161] other info that might help us debug this: [ 176.242161] Possible unsafe locking scenario: [ 176.242162] CPU0 CPU1 [ 176.242163] ---- ---- [ 176.242163] lock(kn->count#103); [ 176.242165] lock(slab_mutex); [ 176.242166] lock(kn->count#103); [ 176.242167] lock(slab_mutex); [ 176.242169] *** DEADLOCK *** [ 176.242170] 3 locks held by slub_cpu_partia/5371: [ 176.242170] #0: ffff888705e3a800 (sb_writers#4){.+.+}, at: vfs_write+0x31c/0x460 [ 176.242174] #1: ffff889aeec4d658 (&of->mutex){+.+.}, at: kernfs_fop_write+0x1a9/0x400 [ 176.242177] #2: ffff88bb6d8b83c8 (kn->count#103){++++}, at: kernfs_fop_write+0x1cc/0x400 [ 176.242180] stack backtrace: [ 176.242183] CPU: 36 PID: 5371 Comm: slub_cpu_partia Not tainted 4.18.0-172.rt13.29.el8.x86_64+debug #1 [ 176.242184] Hardware name: AMD Corporation DAYTONA_X/DAYTONA_X, BIOS RDY1005C 11/22/2019 [ 176.242185] Call Trace: [ 176.242190] dump_stack+0x9a/0xf0 [ 176.242193] check_noncircular+0x317/0x3c0 [ 176.242195] ? print_circular_bug+0x1e0/0x1e0 [ 176.242199] ? native_sched_clock+0x32/0x1e0 [ 176.242202] ? sched_clock+0x5/0x10 [ 176.242205] ? sched_clock_cpu+0x238/0x340 [ 176.242208] __lock_acquire+0x22cb/0x48c0 [ 176.242213] ? trace_hardirqs_on+0x10/0x10 [ 176.242215] ? trace_hardirqs_on+0x10/0x10 [ 176.242218] lock_acquire+0x134/0x4c0 [ 176.242220] ? slab_attr_store+0x6b/0xe0 [ 176.242223] _mutex_lock+0x28/0x40 [ 176.242225] ? slab_attr_store+0x6b/0xe0 [ 176.242227] slab_attr_store+0x6b/0xe0 [ 176.242229] ? sysfs_file_ops+0x160/0x160 [ 176.242230] kernfs_fop_write+0x251/0x400 [ 176.242232] ? __sb_start_write+0x26a/0x3f0 [ 176.242234] vfs_write+0x157/0x460 [ 176.242237] ksys_write+0xb8/0x170 [ 176.242239] ? __ia32_sys_read+0xb0/0xb0 [ 176.242242] ? do_syscall_64+0xb9/0x710 [ 176.242245] do_syscall_64+0x13c/0x710 [ 176.242247] entry_SYSCALL_64_after_hwframe+0x6a/0xdf There was another lockdep splat generated by echoing "1" to "/sys/kernel/slab/fs_cache/shrink": [ 445.231443] Chain exists of: cpu_hotplug_lock --> mem_hotplug_lock --> slab_mutex [ 445.242025] Possible unsafe locking scenario: [ 445.247977] CPU0 CPU1 [ 445.252529] ---- ---- [ 445.257082] lock(slab_mutex); [ 445.260239] lock(mem_hotplug_lock); [ 445.266452] lock(slab_mutex); [ 445.272141] lock(cpu_hotplug_lock); So it is problematic to use slab_mutex to iterate the list of child memcgs with for_each_memcg_cache(). Fortunately, there is another way to do child memcg iteration by going through the array entries in memcg_params.memcg_caches while holding a read lock on memcg_cache_ids_sem. To avoid other possible circular locking problems, we only take a reference to the child memcgs and store their addresses while holding memcg_cache_ids_sem. The actual store method is called for each of the child memcgs after releasing the lock. Signed-off-by: Waiman Long <longman@xxxxxxxxxx> --- mm/slub.c | 58 +++++++++++++++++++++++++++++++++++++++++++++++-------- 1 file changed, 50 insertions(+), 8 deletions(-) diff --git a/mm/slub.c b/mm/slub.c index 183ccc364ccf..44cb5215c17f 100644 --- a/mm/slub.c +++ b/mm/slub.c @@ -5567,13 +5567,32 @@ static ssize_t slab_attr_store(struct kobject *kobj, return -EIO; err = attribute->store(s, buf, len); -#ifdef CONFIG_MEMCG - if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { - struct kmem_cache *c; +#ifdef CONFIG_MEMCG_KMEM + if (slab_state >= FULL && err >= 0 && is_root_cache(s) && + !list_empty(&s->memcg_params.children)) { + struct kmem_cache *c, **pcaches; + int idx, max, cnt = 0; + size_t size, old = s->max_attr_size; + struct memcg_cache_array *arr; + + /* + * Make atomic update to s->max_attr_size. + */ + do { + size = old; + if (len <= size) + break; + old = cmpxchg(&s->max_attr_size, size, len); + } while (old != size); - mutex_lock(&slab_mutex); - if (s->max_attr_size < len) - s->max_attr_size = len; + memcg_get_cache_ids(); + max = memcg_nr_cache_ids; + + pcaches = kmalloc_array(max, sizeof(void *), GFP_KERNEL); + if (!pcaches) { + memcg_put_cache_ids(); + return -ENOMEM; + } /* * This is a best effort propagation, so this function's return @@ -5591,10 +5610,33 @@ static ssize_t slab_attr_store(struct kobject *kobj, * has well defined semantics. The cache being written to * directly either failed or succeeded, in which case we loop * through the descendants with best-effort propagation. + * + * To avoid potential circular lock dependency problems, we + * just get a reference and store child cache pointers while + * holding the memcg_cache_ids_sem read lock. The store + * method is then called for each child cache after releasing + * the lock. Code sequence partly borrowed from + * memcg_kmem_get_cache(). */ - for_each_memcg_cache(c, s) + rcu_read_lock(); + arr = rcu_dereference(s->memcg_params.memcg_caches); + for (idx = 0; idx < max; idx++) { + c = READ_ONCE(arr->entries[idx]); + if (!c) + continue; + if (!percpu_ref_tryget(&c->memcg_params.refcnt)) + continue; + pcaches[cnt++] = c; + } + rcu_read_unlock(); + memcg_put_cache_ids(); + + for (idx = 0; idx < cnt; idx++) { + c = pcaches[idx]; attribute->store(c, buf, len); - mutex_unlock(&slab_mutex); + percpu_ref_put(&c->memcg_params.refcnt); + } + kfree(pcaches); } #endif return err; -- 2.18.1